Shorebirds Helping Shorebirds, One Whelk at a Time

How might the traces of animal behavior influence and lead to changes in the behavior of other animals, or even help other animals? The sands and the muds of the Georgia barrier islands answer this, offering lessons in how seemingly inert tracks, trails, burrows, and other traces can sway decisions, impinging on individual lives and entire ecosystems, and encourage seemingly unlikely partnerships in those ecosystems. Along those lines, we will learn about how the traces made by laughing gulls (Larus altricilla) and knobbed whelks (Busycon carica) aided sanderlings (Calidris alba) in their search for food in the sandy beaches of Jekyll Island.

A roughly triangular depression in a beach sand on Jekyll Island, Georgia, blurred by hundreds of tracks and beak-probe marks of many small shorebirds, all of which were sanderlings (Calidris alba). What is the depression, how was it made, and how did it attract the attention of the sanderlings? Scale = size 8 ½ (men’s), which is about 15 cm (6 in) wide. (Photograph by Anthony Martin.)

Last week, we learned how knobbed whelks (Busycon carica), merely through their making trails and burrows in the sandy beaches of Jekyll Island, unwittingly led to the deaths of dwarf surf clams (Mulinia lateralis), the latter eaten by voracious sanderlings. Just to summarize, the dwarf surf clams preferentially burrowed around areas where whelks had disturbed the beach sand because the burrowing was easier. Yet instead of avoiding sanderling predation, the clustering of these clams around the whelks made it easier for these shorebirds to eat more of them in one sitting. Even better, this scenario, which was pieced together through tracks, burrows, and trails, was later verified by: catching whelks in the act of burying themselves; seeing clams burrow into the wakes of whelk trails; and watching sanderlings stop to mine these whelk-created motherlodes of molluscan goodness.

Before and after photos, showing how the burrowing of a knobbed whelk caused dwarf surf clams to burrow in the same small area (top), which in turn provided a feast for sanderlings (bottom); the latter is evident from the numerous tracks, peak-probe marks, and clam-shaped holes marking where these hapless bivalves formerly resided. (Both photographs by Anthony Martin, taken on Jekyll Island, Georgia.)

Was this the only trace-enhanced form of predation taking place on that beach? By no means, and it wasn’t even the only one involving whelks and their traces, as well as sanderlings getting a good meal from someone else’s traces. This is where a new character – the laughing gull (Larus altricilla) – and a cast of thousands represented by the small crustaceans – mostly amphipods – enter the picture. How these all come together through the life habits and traces these animals leave behind is yet another example of how the Georgia coast offers lessons in how the products of behavior are just as important as the behavior itself.

Considering that knobbed whelks are among the largest marine gastropods in the eastern U.S., it only makes sense that some larger animal would want to eat one whenever it washes up onto a beach. For example, seagulls, which don’t need much encouragement to eat anything, have knobbed whelks on their lengthy menus.

So when a gull flying over a beach sees a whelk doing a poor job of playing “hide-and-seek” during low tide, it will land, walk up to the whelk, and pull it out of its resting spot. From there, the gull will either consume the whelk on the spot, fly away with it to eat elsewhere (“take-out”), or reject it, leaving it high and dry next to its resting trace. An additional trace caused by gull predation might be formed when gulls carry the whelk through the air, drop them onto hard surfaces – such as a firmly packed beach sand – which effectively cracks open their shells and reveals their yummy interiors.

Paired gull tracks in front of a knobbed whelk resting trace, with the whelk tracemaker at the bottom of the photo. Based on size and form, these tracks were made by laughing gulls (Larus altricilla). The one on the left is likely the one that plucked the whelk from its resting trace, as its feet were perfectly positioned to pick up the narrow end of the whelk with its beak. The second gull might have seen what the first was doing and arrived on the scene soon afterwards, hoping to steal this potential meal for itself. For some reason, though, neither one ate it; instead, they discarded their object of desire there on the sandflat. For those of you who wondered if I then just walked away after taking the photo, I assure you that I threw the whelk back into water. At the same time, though, I acknowledged that the same sort of predation and rejection might happen again to that whelk with the next tidal cycle. Other shorebird tracks in the photo are from willets and sanderlings. (Photograph by Anthony Martin, taken on Jekyll Island.)

Sure enough, on the same Jekyll Island beach where we saw the whelk-surf clam-sanderling interactions mentioned last week, and on the same day, my wife Ruth Schowalter and I noticed impressions where whelks had incompletely buried themselves at low tide, only to be pried out by laughing gulls. Although we did not actually witness gulls doing performing, we knew it had happened because their paired tracks were in front of triangular depressions, followed by more tracks with an occasional discarded (but still live) whelk bearing the same dimensions as the impression.

My wife Ruth aptly demonstrates how to document seagull and whelk traces (foreground) while on bicycle, no easy feat for anyone, but a cinch for her.  Labels are: GT = gull tracks; WRT = whelk resting trace; KW = knobbed whelk; SU = spousal unit; and LCEFV = low-carbon-emission field vehicle. (Photograph by Anthony Martin, taken on Jekyll Island, Georgia.)

With this search image of a whelk resting trace in mind, we then figured out what had happened in a few places when we saw much more vaguely defined triangular impressions. These were also whelk resting traces, but they were nearly obliterated by sanderling tracks and beak marks; there was no sign of gulls having been there, nor any whelk bodies. Hence these must have been instances of where the gulls flew away with their successfully acquired whelks to drop them and eat them somewhere else. But why did the sanderlings follow the gulls with the shorebird equivalent of having a big party in a small place?

Yeah, I did it: so what? A laughing gull, looking utterly guiltless, stands casually on a Jekyll Island beach, unaware of how its going after knobbed whelks also might be helping its little sanderling cousins find amphipods. (Photograph by Anthony Martin.)

Although many people may not know this, when they walk hand-in-hand along a sandy Georgia beach, a shorebird smorgasbord lies under their feet in the form of small bivalves and crustaceans. The latter are mostly amphipods (“sand fleas”), which through sheer number of individuals can compose nearly 95% of the animals living in Georgia beach sands. Amphipods normally spend their time burrowing through beach sands and eating algae between sand grains or on their surfaces.

Close-up view of the amphipod Acanthohaustorius millsi, one of about six species of amphipods and billions of individuals living in the beach sands of the Georgia barrier islands, all of which are practically begging small shorebirds to eat them. Photo from here, borrowed from NOAA (National Oceanic and Atmospheric Administration – a very good use of U.S. taxpayer money, thank you very much) and linked to a site about Gray’s Reef National Marine Sanctuary, which is about 30 km (18 mi) east of Sapelo Island, Georgia.

Because amphipods are exceedingly abundant and just below the beach surface, they represent a rich source of protein for small shorebirds. But if you really want to make it easier for these shorebirds to get at this food, just kick your feet as you walk down the beach. This will expose these crustaceans to see the light of day, and the shorebirds will snap them up as these little arthropods desperately try to burrow back into the sand. This, I think, is also what happened with the gulls pulling whelks off the beach surface. Through the seemingly simple, one-on-one predator-prey act of a gull picking up a whelk, it exposed enough amphipods to attract sanderlings, which then set off a predator-prey interaction between the sanderlings and amphipods, all centered on the resting trace of the whelk.

Two whelks near one another resulted in two resting traces, and now both are missing, which likely means they were taken by laughing gulls. Notice how all of the sanderling trampling and beak marks have erased any evidence of the gulls having been there. (Photograph by Anthony Martin, taken on Jekyll Island.)

So as a paleontologist, I always ask myself, how would this look if I found something similar in the fossil record, and how would I interpret it? What I might see would be a dense accumulation of small, overlapping three-toed tracks – with only a few clearly defined – and an otherwise irregular surface riddled by shallow holes. The triangular depression marking the former position by a large snail, obscured by hundreds of tracks and beak marks, might stay unnoticed, or if seen, could be disregarded as an errant scour mark. The large gull tracks would be gone, overprinted by the many tracks and beak marks of the smaller birds.

Take a look again at the scene shown in the first photograph, and imagine it fossilized. Could you piece together the entire story of what happened, even with what you now know from the modern examples? I’m sure that I couldn’t. Scale bar = 15 cm (6 in). (Photograph by Anthony Martin.)

Hence the role of the instigator for this chain of events, the gull or its paleontological doppelganger, as well as its large prey item, would remain both unknown and unknowable. It’s a humbling thought, and exemplary of how geologist or paleontologist should stop to wonder how much they are missing when they recreate ancient worlds from what evidence is there.

Cast (reproduction) of a dense accumulation of small shorebird-like tracks from Late Triassic-Early Jurassic rocks (about 210 million years old) of Patagonia, Argentina. These tracks are probably not from birds, but from small bird-like dinosaurs, and they were formed along a lake shoreline, rather than a seashore. Nonetheless, the tracemaker behaviors may have been similar to those of modern shorebirds. Why were these animals there, and what were they eating? Can we ever know for sure about what other animals preceded them on this small patch of land, what these predecessors eating, and how their traces might have influenced the behavior of the trackmakers? (Photograph by Anthony Martin; cast on display at Museo de Paleontológica, Trelew, Argentina.)

Another parting lesson that came out of these bits of ichnological musings is that all of the observations and ideas in this week’s and last week’s posts blossomed from one morning’s bicycle ride on a Georgia-coast beach. Even more noteworthy, these interpretations of natural history were made on an island that some scientists might write off as “too developed” to study, its biota and their ecological relationships somehow sullied or tainted by a constantly abundant and nearby human presence. So whenever you are on a Georgia barrier island, just take a look at the life traces around you, whether you are the only person on that island or one of thousands, and prepare to be awed.

Further Reading

Croker, R.A. 1968. Distribution and abundance of some intertidal sand beach amphipods accompanying the passage of two hurricanes. Chesapeake Science, 9: 157-162.

Elbroch, M., and Marks, E. 2001. Bird Tracks and Sign of North America. Stackpole Books. Mechanicsburg, Pennsylvania: 456 p.

Grant, J. 1981. A bioenergetic model of shorebird predation on infaunal amphipods. Oikos, 37: 53-62.

Melchor, R. N., S. de Valais, and J. F. Genise. 2002. The oldest bird-like fossil footprints. Nature, 417:936938.

Wilson, J. 2011. Common Birds of Coastal Georgia. University of Georgia Press, Athens, Georgia: 219 p.

Knobbed Whelks, Dwarf Clams, and Shorebirds: A Love Story, Told Through Traces

For the last three Thanksgivings, my wife Ruth and I have fled the metropolitan Atlanta area and sought “nature therapy” through the environments of Jekyll Island on the Georgia coast. For this all-too-short vacation, we take our bicycles with us, stay in a hotel near the beach, and ride for hours on Jekyll’s plentiful bike paths or long beaches, taking in the fresh sea air and stopping to look at and document any animal traces that catch our interest. It is ichnology with a low carbon footprint, natural history that’s also eco-chic. Best of all, though, we have been to Jekyll enough times to know where the best traces are likely to be found. Because of this inside knowledge and enthusiasm for all things ichnological, we sometimes discover phenomena, that, as far as we know, were previously unnoticed on any of the undeveloped Georgia barrier islands.

This Thanksgiving break was one of those times. The cast of characters in our latest novel find includes: two molluscans, knobbed whelks (Busycon carica) and dwarf surf clams (Mulinia lateralis); and two species of shorebirds, sanderlings (Calidris alba) and laughing gulls (Larus altricilla). How these four animals and their traces related to one another made for a fascinating story, nearly all of it discerned through their traces left on that Jekyll Island beach.

A view of a sandy beach on Jekyll Island at low tide with clusters of shallowly buried dwarf surf clams (Mulinia lateralis). These bivalves and their burrows, combined with beak marks and tracks of one of their predators, sanderlings (Calidris alba), make for the dark patches on the sand. But do you also see the abundant knobbed whelks (Busycon carica) and their traces in this photo? If not, please read on. (Ruth Schowalter for scale, happily standing by her bicycle, and photograph by Anthony Martin.)

Jekyll is a developed island on the Georgia coast, its southern end about 30 kilometers (18 miles) north of the Georgia-Florida border, with sandy beaches, dunes, salt marshes, and maritime forests, all interrupted by residences, roads, golf courses, boutique shops, and other human-centered amenities. On the southeastern end of Jekyll, however, the beachside condominiums and hotels become fewer and the sandy natural areas correspondingly expand, holding bountiful traces of the local wildlife. With this geography in mind, we headed south on our bikes along the beach our first full day there. During this exhilarating outing, Ruth and I paused occasionally to figure out what animal activities might have taken place in the minutes or hours before our arrival, just after the high tide had turned and exposed broader areas of sandy beach.

We were not disappointed, as some traces immediately caught our attention. Low in the intertidal zone, we noticed upraised flaps of sand that marked the subsurface positions of variably sized knobbed whelks, which are among the largest marine snails in the eastern U.S. These whelks, brought in by the high tide and strong waves, had burrowed down into the sand as soon as the tide subsided. This behavioral mode has been positively reinforced by millions of years by natural selection, a tactic by the whelk that avoids both desiccation and predation.

Here’s how to spot a buried whelk. Look for a triangular interruption in an otherwise smooth surface, where a flap of sand is slightly raised. Sometimes this trace also has a small hole at one end of the triangle. Test your hypothesis by digging in gently with your fingers. If you’re wrong, then revise your search image for their traces until you get it right. The knobbed whelk pictured here is a small one, but check out the size of the one in the next picture. (Both photographs by Anthony Martin, taken on Jekyll Island.)

A whelk uses its muscular foot to bury itself, expanding and contracting it so that the foot probes into the still-saturated sand left by the high tide; once the foot anchors in the sand, it pulls the rest of the whelk sideways and down. This really isn’t so much “burrowing” as an intrusion, where the animal insinuates itself into the sand. Contrast this method with the active digging we normally associate with burrows made by most terrestrial animals with legs.

A robust specimen of a knobbed whelk (held by Ruth), showing off its well-developed foot, which it uses to bury itself. (Photograph by Anthony Martin, taken on Jekyll Island.)

A knobbed whelk caught in the act of burying itself, leaving a short trail behind and a mound of sand in front as it starts to get underneath the beach surface. (Photograph by Anthony Martin, taken on Jekyll Island.)

Once a whelk is buried, waves may wash over its trail, erasing all evidence of its preceding actions. Nonetheless, once emergent, seawater drains downward through the sand and tightens these grains around the whelk, denoting it as a triangular “trap door” that occasionally has a small hole at one end. This hole marks where the whelk expelled water through the bottom end of its shell.

Near these clear examples of whelk traces on this beach were clusters of dwarf surf clams. Similar to whelks, these clams were washed up by the hide tide and waves, and they instinctually burrowed once exposed on the surface. Although much smaller and more streamlined than knobbed whelks, they likewise use a muscular foot to intrude the sand, anchor, and pull in their shelled bodies. Under the right conditions, these clams will also leave a trail behind them before descending under the sand, although such traces are easily wiped clean by a single wave.

Cluster of dwarf surf clams that burrowed into the sand at low tide, some noticeable through little “sand caps” on top of them. Say, I wonder why there’s a triangular-shaped bare spot of sand toward one end of that cluster? (Swiss Army knife = 6 cm (2.4 in) long; photograph by Anthony Martin, taken on Jekyll Island.)

Although dwarf surf clams ideally orient themselves vertically and push two siphons through the sand – making a Y-shaped burrow – they sometimes only have enough strength to bury themselves on their sides, hidden by a mere cap of sand. This bivalve equivalent of hiding under a blanket makes them much more vulnerable to predation, especially from shorebirds that find these clams and make quick snacks of them, such as sanderlings.

Sanderling (Calidris alba), 50-100 g of pure avian fury, prowling the sandy tidal flat of Jekyll Island in search of prey. Moon snails, given their fierce predation on other molluscans, may be the “lions of the tidal flat,”  but as far as small crustaceans and clams are concerned, sanderlings are the “tyrannosaurs.” (Photograph by Anthony Martin, taken on Jekyll Island.)

Sanderlings eat many small crustaceans that live in the sand, but they are also fond of small bivalves, such as dwarf surf clams. Sure enough, wherever you find a cluster of these clams, you will also find abundant tracks and beak probe marks made by these birds. Both their tracks and the probe patterns made by their beaks are diagnostic of this species: when I see these traces on any Georgia beach, I don’t have to look at a bird-identification guide to know whether sanderlings, dunlins, plovers, or sandpipers were there. Their food choices are clarified even more when you see their tracks and beak-probe marks directly associated with almond-shaped holes, where they neatly extracted the clams from their burrows.
Sanderling tracks and beak-probe marks, with holes where clams were located by the sanderlings and  plucked out of their shallow burrows. (Swiss Army knife = 6 cm (2.4 in) long; photograph by Anthony Martin, taken on Jekyll Island.)

So how do these three species and their traces all relate to one another? (And what about the laughing gull?) Well, this is where it got even more interesting. Ruth and I soon started spotting triangular outlines within the clam clusters, bare spots on the sand devoid of both clams and beak marks. Underneath these were whelks. As we stood back and looked down the beach, we then saw how these clumps of clams were throughout the intertidal zone, and each was surrounding a whelk. Somehow the whelks had served as nucleation sites for clams, which had chosen to burrow in the sand around the whelks, instead of being randomly dispersed throughout the beach.

Remember this previous photo? There’s a whelk buried underneath that bare triangular patch.

Didn’t believe me? Well, there it is. It’s almost as if ichnology is a science, in which hypotheses, once confirmed by evidence-based reasoning, have predictive power.

Here are two more clusters of dwarf surf clams around buried whelks, hidden but still identifiable.

Quiz time: how many whelks are here? Thanks to ichnology, you don’t actually have to see them to dig them out for a census. (All four photographs by Anthony Martin and taken on Jekyll Island.)

Why were the clams burrowing around the whelks? Was this some sort of commensalism, in which the clams found more food around the whelks? No, because these clams are filter feeders, taking in water with suspended organic material for their sustenance, instead of ingesting the sand around them. How about protection? That didn’t seem likely either, because the whelk had no interest in defending the clams, and its body wasn’t even serving as a shield against shorebirds.

So I thought about how these clams burrow, and then it all made sense. Because dwarf surf clams are so small, sand grains are more like cobbles would be to you and me. Moving through these sediments thus takes considerable effort, especially as water drains from the sand and surface tension holds together the grains more tightly. This means the clams have to take advantage of sand that acts more like quicksand and less like concrete, and burrow when the sand has lots of water between the grains.

This is where the whelk became both the unwitting friend and enemy of the dwarf surf clams. As it burrowed, it fluidized the sand around it, shaking up the grains so that more space opened between them, which allowed in more water. This zone of disturbance and liquified sand was eagerly exploited by nearby clams, which easily burrowed into both the whelks’ trails and the immediate areas around their bodies.

Alas, this opportunity for safety provided by the whelk ultimately led to the sanderlings chowing down on the clams. What might have been a meticulous search for small clams sprinkled hither and tither throughout the broad Jekyll beach had now became a lot easier, thanks to both the whelks and the clams. All a sanderling had to do was find each motherlode of clams conveniently grouped around a buried whelk and start probing. It was an all-you-can-eat clam feast, and the traces clearly showed where some of these birds stopped and took their time gorging on the clams. Their tracks also showed where one stopped sanderling attracted the attention of others, which then rushed to the scene and joined in the buffet.

Wait, what have we here? A sanderling alters its course to investigate an obvious dense accumulation of dwarf surf clams. How did this population get so dense? Blame the knobbed whelk, which was just minding its own business by burrowing.

The carnage of sanderling plundering, in which about a third of buried dwarf surf clams were pulled from their burrows and the sand was trampled by thundering avian feet. This gruesome scene can all be laid at the feet, er, foot of the the whelk pictured here, which through its burrowing made it easier for the clams to burrow around it. (Both photographs by Anthony Martin and taken on Jekyll Island.)

But what about the laughing gull and its role in this story? Sorry, that will have to wait until next week’s post. In the meantime, in these days immediately following the Thanksgiving holiday in the U.S., let us all be thankful for the natural areas still preserved on Jekyll Island that allow for such wanderings of our bodies and minds, as well as the little personal discoveries of its life traces, infused with wonder, that can be shared with others.

Further Reading

Elbroch, M., and Marks, E. 2001. Bird Tracks and Sign of North America. Stackpole Books. Mechanicsburg, Pennsylvania: 456 p.

Howard, J.D., and Dörjes, J., 1972. Animal-sediment relationships in two beach-related tidal flats: Sapelo Island, Georgia. Journal of Sedimentary Research, 42: 608-623.

MacLachlan, A., and Brown, A.C. 2006. The Ecology of Sandy Shorelines. Academic Press, New York: 373 p.

Powers, S.G., and Kittinger, J.N. 2002. Hydrodynamic mediation of predator–prey interactions: differential patterns of prey susceptibility and predator success explained by variation in water flow. Journal of Experimental Marine Biology and Ecology, 273: 171-187.

Wilson, J. 2011. Common Birds of Coastal Georgia. University of Georgia Press, Athens, Georgia: 219 p.