Descent with Modification

At this time last year, Fernbank Museum of Natural History was hosting the Darwin exhibit. On loan from the American Museum of Natural History, this exhibit was a major coup for the museum and the Atlanta area, which has enjoyed a growing culture of celebrating science during the past few years. Along with this exhibit, the museum also planned and concurrently displayed an evolution-themed art show, appropriately titled Selections, which I wrote about then here.*

Descent with Modification (2011), mixed media (colored pencils and ink) on paper, 24″ X 36.” Although this artwork might at first look like a tentacled creature infested with crustaceans and living on a sea bottom, its main form actually mimics a typical burrow system made by ten-legged crustaceans (decapods). Yet it’s also an evolutionary hypothesis. Intrigued? If so, please read on. If not, there are plenty of funny cat-themed Web sites that otherwise require your attention. (Artwork and photograph of the artwork by Anthony Martin.)

One unusual feature of this art show was that five of the eight artists were also scientists (full confession: I was one of them). Furthemore, one of the other artists was married to a scientist (fuller confession: that would be my wife Ruth). The show stayed up for more than three months, which was also as long as the Darwin exhibit resided at Fernbank. Thus we like to think it successfully exposed thousands of museum visitors to the concept that scientists, like many other humans, have artistic inspirations and abilities, neatly refuting the stereotype that not all of us are joyless, left-brained automatons and misanthropes.

Last week I was reminded of this anniversary and further connections between science and art during a campus visit last week by marine biologist and crustacean expert Joel Martin (no relation). Dr. Martin was invited to Emory University to give a public lecture with the provocative title God or Darwin? A Marine Biologist’s Take on the Compatibility of Faith and Evolution. His lecture was the first of several on campus this year about the intersections between matters of faith and science, the Nature of Knowledge Seminar Series. This series was organized as a direct response to the university inviting a commencement speaker this past May who held decidedly strong and publicly expressed anti-science views.

Dr. Martin, who is also an ordained elder in his Presbyterian church and has taught Sunday school to teenagers in his church for more than 20 years, gave an informative, organized, congenial, and otherwise well-delivered presentation to an audience of more than 200 students, staff, faculty, and other people from the Atlanta community. In his talk, Martin effectively explored the false “either-or” choice often presented to Americans who are challenged by those who unknowingly misunderstand or deliberately misrepresent evolutionary theory in favor of their beliefs. Much of what he mentioned, he said, is summarized in a book he wrote for teenagers and their parents, titled The Prism and the Rainbow: A Christian Explains Why Evolution is Not a Threat.

I purposefully won’t mention any of the labels that have been applied to the people and organizations who promote this divisiveness between evolutionary theory and faith. After all, words have power, especially when backed up by Internet search engines. Moreover, it is an old and tired subject, of which I grow weary discussing when there is so much more to learn from the natural world. Better to just say that Martin persuasively conveyed his personal wonder for the insights provided by evolutionary theory, how science informs and melds with his faith, and otherwise showed how science and faith are completely compatible with one another. You know, kind of like science and art.

Previous to his arrival, his host in the Department of Biology asked Emory science faculty via e-mail if any of us would like to have a one-on-one meeting with Dr. Martin during his time here. I leaped at the chance, and was lucky enough to secure a half-hour slot in his schedule. When he and I met in my office, we had an enjoyable chat on a wide range of topics, but mostly on our shared enthusiasm for the evolution of burrowing crustaceans, and particularly marine crustaceans.

Ophiomorpha nodosa, a burrow network in a Pleistocene limestone of San Salvador, Bahamas. In this instance, the burrows were probably made by callianassid shrimp, otherwise known as “ghost shrimp,” and are preserved in what was a sandy patch next to a once-thriving reef from 125,000 years ago. (Photograph by Anthony Martin.)

Interestingly, during this conversation we also touched on on how art and science work together, and I was pleasantly surprised to find out that Dr. Martin is a talented artist, too. It turns out he has illustrated many of his articles with exquisite line drawings of his beloved subjects, marine crustaceans. Yes, I realize that some artists like to draw a line (get it?) between being an “artist” and an “illustrator,” with the latter being held in some sort of disdain for merely “copying” what is seen in nature. If you’re one of those, sorry, I don’t have the time or inclination to argue about this with you. (Now go back to putting a red dot on a white canvas and leave us alone.)

Cover art of branchiopod Lepidurus packardi from California, drawn by Joel W. Martin, for An Updated Classification of the Recent Crustacea, also co-authored by Joel W. Martin and George E. Davis: No. 39, Science Series, Natural History Museum of Los Angeles County, Los Angeles, California.

During our discussion in my office, I pointed out a enlarged reproduction of a drawing of mine depicting the burrow complex of an Atlantic mud crab (Panopeus herbstii). He immediately recognized it as a crustacean burrow, for which I was glad, because it is an illustration of just that in my upcoming book, Life Traces of the Georgia Coast.

Burrow complex made by Atlantic mud crab (Panopeus herbstii), originally credited to a snapping shrimp (Alpheus heterochaelis). Scale = 5 cm (2 in). (Illustration by Anthony Martin, based on epoxy resin cast figured by Basan and Frey (1977).

After his campus visit, though, I realized that an even more appropriate artistic work to have shown him was the following one made for the Selections art exhibit last fall, titled Descent with Modification. This title in honor of the phrase used by Charles Darwin to describe the evolutionary process, but also is a play on words connecting to the evolution of burrowing crustaceans.

Descent with Modification again, but this time look at it as an evolutionary chart, where the burrow junctions in the burrow system reflect divergence points (nodes) from common ancestors. For example, from left to right, the ghost shrimp is more closely related to a mud shrimp, and both of these are more closely related to the ghost crab (middle) than they are to the lobster and freshwater crayfish (right). The main vertical burrow shaft represents their common ancestry from a “first decapod,” which may have been as far back as the Ordovician Period, about 450 million years ago.

The image shows five burrowing crustaceans, or to be more specific, ten-legged crustaceans called decapods. Along with these is a structure, which has a burrow entrance surrounded by a conical mound of excavated and pelleted sediment, a vertical shaft connecting to the main burrow network, and branching tunnels that lead to terminal chambers. A burrowing crustacean occupies each chamber, and these are, from left to right: a ghost shrimp (Callichirus major), a mud shrimp (Upogebia pusilla), a ghost crab (Ocypode quadrata), a marine lobster (Homarus gammarus), and a freshwater crayfish (Procambarus clarkii).

Here’s the cool part (or at least I think so): this burrow system also serves as an evolutionary chart – kind of a cladogram – depicting the ancestral relationships of these modern burrowing decapods. For example, lobsters and crayfish are more closely related to one another (share a more recent common ancestor) than lobsters are related to crabs. Mud shrimp are more closely related to crabs than ghost shrimp. Accordingly, the burrow junctions show where these decapod lineages diverged. So the title of the artwork is a double entendre with reference to Darwin’s phrase describing evolution as a process of “descent with modification,” along with burrowing decapods undergoing change through time as they descend in the sediment.

Modern decapod burrows and trace fossils of probable decapod burrows support both the science and the artwork, too. Here are a few examples to whet your ichnological and aesthetic appetites:

Thalassinoides, a trace fossil of horizontally oriented and branching burrow systems made by decapods in Early Cretaceous rocks (about 115 mya) of Victoria, Australia. In this case, these burrows were likely by freshwater decapods, such as crayfish, which had probably diverged from a common ancestor with marine lobsters more than 100 million years before then. Scale = 10 cm (4 in). (Photograph by Anthony Martin.)

Thalassinoides again, but this time in limestones formed originally in marine environments, from the Miocene of Argentina. Note the convergence in forms of the burrows with those of the freshwater crayfish ones in Australia. Think that might be related to some sort of evolutionary heritage? Scale = 15 cm (6 in). (Photograph by Anthony Martin.)

Horizontally oriented burrow junction of a modern ghost shrimp – probably made by a Carolina ghost shrimp (Callichirus major) – exposed along the shoreline of Sapelo Island, Georgia. Note the pelleted exterior, which is also visible on the burrow networks of the fossil ones in the Bahamas, pictured earlier. So if fossilized, this would be classified as the trace fossil Ophiomorpha nodosa. Scale in centimeters. (Photograph by Anthony Martin.)

Two ghost-shrimp burrow entrances on a beach of Sapelo Island, Georgia, with the one on the right showing evidence of its occupant expelling water from its burrow. No scale, but burrow mound on right is about 5 cm (2 in) wide. (Photograph by Anthony Martin.)

Burrow entrance and conical, pelleted mound made by a freshwater crayfish (probably a species of Procambarus) in the interior of Jekyll Island, Georgia. Scale = 1 cm (0.4 in). (Photograph by Anthony Martin.)

So the take-away message of all of these musings and visual depictions is that evolution, faith, science, art, trace fossils, modern burrows, and burrowing decapods can all co-exist and be celebrated, regardless of whether we sing Kumbaya or not. So let’s stop dividing one another, get out there, and learn.

*I’m also proud to say that my post from October 17, 2011, Georgia Life Traces as Art and Science, was nominated for possible inclusion in Open Laboratory 2013. Thank you!

Further Reading

Basan, P.B., and Frey, R.W. 1977. Actual-palaeontology and neoichnology of salt marshes near Sapelo Island, Georgia. In Crimes, T.P., and Harper, J.C. (editors), Trace Fossils 2. Liverpool, Seel House Press: 41-70.

Martin, A.J. In press. Life Traces of the Georgia Coast: Revealing the Unseen Lives of Plants and Animals. Indiana University Press, Bloomington, IN: 680 p.

Martin, A.J., Rich, T.H., Poore, G.C.B., Schultz, M.B., Austin, C.M., Kool, L., and Vickers-Rich, P. 2008. Fossil evidence from Australia for oldest known freshwater crayfish in Gondwana. Gondwana Research, 14: 287-296.

Martin, J.W. 2010. The Prism and the Rainbow: A Christian Explains Why Evolution is Not a Threat. Johns Hopkins University Press, Baltimore, MD: 192 p.

Martin, J.W., and Davis. G.E. 2001. An Updated Classification of the Recent Crustacea, No. 39, Science Series, Natural History Museum of Los Angeles County, Los Angeles, California: 132 p.

 

Ghost Crabs and Their Ghostly Traces

The ghost crabs of the Georgia barrier islands – all belonging to the species Ocypode quadrata – are among my favorite tracemakers anywhere, any time. My ichnological admiration for them stems from the great variety of behaviors they record in the beach and dune sands of the islands, telling many fascinating tales of what they were doing while no one was watching. Thus I thought it only appropriate that a blog entry posted close to Halloween deserved a story about an animal that not only has the word “ghost” in its common name, but one that also leaves mystifying marks of its unseen behavior.

On the dawn of June 22, 2004 on Sapelo Island (Georgia), my wife Ruth and I were presented with one of the most intriguing of ghost-crab mysteries related to their vestiges. We were scanning the freshly scoured surfaces of Nannygoat Beach on the south end of the island; high tide only a few hours before had cleansed the beach of the previous day’s traces. The low-angle rays of early-morning sunlight were optimal for contrasting any newly made animal signs on the beach, which is why we were there then. We went to the beach with our minds open to anything novel; indeed, my experience with the Georgia barrier islands is that no matter how many times you visit them, they always hold previously unsolved puzzles.

Sure enough, within about 15 minutes of stepping foot on the beach, Ruth paused and asked one of the most simple – yet important – of scientific questions: “What is this?” She pointed to a depression on the sandy surface, and what I saw was astonishing. It was a trace perfectly outlining the lower (ventral) half of a ghost crab, preserving in detail: impressions of all eight walking legs (pereiopods), including their pointed ends (dactyli); its smaller claw (inferior cheliped) and larger claw (superior cheliped); and its main, rectangular body.

A perfect outline of the bottom side of a ghost crab (Ocypode quadrata), found just after dawn and high tide on Nannygoat Beach, Sapelo Island, Georgia. Why would a ghost crab make such a trace? (Scale in centimeters, and photograph taken by Anthony Martin.)

Even more strangely, only one set of tracks connected with this body imprint, leading away from it, and none moved toward it. This was not an impression made by the dead body of a crab. Instead, the tracks showed that the crab was very much alive when it made its resting trace and immediately afterwards. But what happened just before then? It looked as if the crab floated through the air, dropped vertically, made a perfect 10-point landing, sat there for a while, and walked away.

Another exquisitely defined ghost-crab body impression, and with tracks leading away from it, showing this is not a crab “death mask,” but one made by a live crab. (Scale in centimeters, and photograph taken by Anthony Martin.)

The same ghost-crab impression as above, but this time with the crab anatomy labeled and direction of movement after it stopped and sat down on the sand. What happened to the tracks that must have led to its resting spot? And what’s with that word “hydration”? Let’s just say this is what you call “foreshadowing” in the story. (Scale in centimeters, and photograph taken by Anthony Martin.)

Knowing that ghost crabs can do a lot of things, but not aerial acrobatics, we wondered how this could have happened. Well, single observations can be the start of good science, but for this inquiry to progress any further, we had to see if this seemingly unusual observation could be repeated. So we walked further south along the beach to test whether this was an isolated incident, or if we could find any other ghost-crab outlines with single trackways attached. With such a search image in mind, we quickly found about a dozen more such marks made by crabs of various sizes, but showing an identical behavior. Even better, all were located just below the high-tide mark of the previous night.

Yet another beautiful ghost-crab resting trace, surrounded by a scoured beach surface. Lot of these traces and all just below the high-tide mark meant something was happening that could be answered by the awesome power of science. (Scale in centimeters, and photograph taken by Anthony Martin.)

Time to think. These crabs must have walked to their resting places, but why didn’t they leave any tracks? We soon realized that the tracks were certainly made, but not preserved. So like all other surface traces on the beach, they must have been made erased during high tide. Yes, that was it! The crabs walked to the surf zone just after the high tide, sat down, waited long enough for the tide to drop a little bit, and walked away.

Mystery solved? Well, not quite. This was an incomplete explanation, one with a big, unanswered question. Why did the ghost crab walk to – and sit down in – the surf? (With a prompt like that, feel free to create your own intertidal-crab equivalent of “chicken-crossing-road” punch lines.) Ghost crabs normally spend much of their time in deep, J- or Y-shaped burrows close to or in the dunes, and above the high-tide mark. They are most active at night, when they come out of their burrows to scavenge delectable dead things dumped on the beach by waves and tides, or to prey on smaller invertebrates, like dwarf surf clams (Mulinia lateralis). They also leave their burrows to seek mates, which might involve one crab enticing another to check out its burrow.

A seemingly indignant and defiant ghost crab outside of its burrow during the day, either looking for new territory, food, mates, or all three. They’re greedy that way. In this instance, though, it was mostly running away from me and my camera. (Photograph taken by Anthony Martin.)

None of the crabs that made these traces were scavenging, preying, or mating, yet something in the surf was life-sustaining enough for them to risk becoming meals for early-morning predatory shorebirds. I searched my memory for what I had read previously about ghost crabs and their biological needs, and finally realized what could have driven them to the surf in the middle of the night: they were thirsty.

You see, ghost crabs are living examples of so-called transitional animalsthat evolution-deniers insist do not exist, having an interesting mixture of adaptations to different environments. These crabs are descended from fully marine crabs, so they still have gills that allow them to filter oxygen from marine water. Yet they also have little lungs and can breathe air, enabling them to stay out of the water for hours. Having both gills and lungs makes them semi-terrestrial, living in a world between the land and ocean, and dependent on both realms. They live close to the sea for their food, reproduction (females lay their fertilized eggs in sea water), and water, but their main livelihood is gained from the beach and dunes.

In this respect, ghost-crab burrows in the upper parts of beaches and lower parts of dunes provide protection against predators, but also keep the crabs hydrated. One of the functions of a ghost-crab burrow – which can be more than one meter (3.3 feet) deep, is to intersect the water table below. That way, when a crab needs water for proper respiration, it crawls down the burrow to that saturated area and replenishes it bodily fluids. But they can’t stay down there as the tide rises, so they move higher up the burrow to where there’s some air. Unlike blue crabs (Callinectes sapidus), which have completely developed gills and hence fully marine, if you keep a ghost crab in sea water too long, it drowns.

The previous night was a higher tide than normal, which probably flooded many of the ghost-crab burrows and causing these crabs to abandon their homes. This meant the crabs spent most of the night outside of their burrows, resulting in dehydration, but having to wait out the high tide. As soon as the tide turned and began to drop, the crabs ran to the surf zone, settled down into the wet sand, and soaked up water through small openings where the legs connect to the main body. Spiky “hairs” (setae) on their legs help with this water up-take, drawing up moisture from the sand through capillary action.

My legs? Sorry, I meant to shave. Guess you’ll have to deal with it. Hey, wait a minute: does that pose look like it could make anything you’ve already seen, like, oh, I don’t know, a resting trace? Keep reading. (Photograph by Anthony Martin.)

Ghost crabs are amazingly efficient at pulling water out of sand. So their hunkering down onto a saturated sandy surface with waves breaking on top of them must have been like the ghost-crab equivalent of drinking from a funnel, quenching their thirst in a most satisfying way. Meanwhile, waves washed away their tracks leading to these resting spots. They stayed a while, long enough for the tide to drop and expose the sandy beach surface. Only then did they get up and walk away, fully rehydrated, refreshed, and ready to go back to their burrows or dig new ones.

This was a detailed explanation, but one based entirely on traces and what little I knew about ghost crabs from the scientific literature. How else to test it and see whether it was right or not?

If you just said, “By directly observing this interpreted behavior in a ghost crab,” you would be right. A little more than a month later, on July 30, 2004, I actually got to witness this behavior, and on Nannygoat Beach. Back without Ruth this time, and by myself, I was looking for more traces following a high tide, when I saw a small, wraith-like movement out of the corner of my eye. It was a beautiful adult ghost crab, flat-out running in full daylight and heading straight from the dunes to the surf zone. I stood back and watched it reach the surf, where it promptly sat down and became still.

Here’s a ghost crab that doesn’t mind getting a soggy bottom. This one sprinted from the dunes to the surf, stopped abruptly, and sat a spell. (Photograph by Anthony Martin.)

I took photos while walking toward this crab, expecting it to bolt at any moment. Instead, I was instead surprised to see it remain where it sat, even as its eye stalks rotated to look warily at me. Amazed, I grasped that this one must have been thirsty enough to risk being eaten or stomped. The photo you see shows just how close I got to it, and I was thrilled to see it in exactly the same position depicted by the traces Ruth and I had seen the month before.

Although scientists aren’t always right, if you practice good science, you sometimes hit the nail on the head. Or the crab on the sand. Or, well, never mind. Anyway, this ghost crab is making a trace just like the ones documented the month before and in the same place, and it is a direct result of the same behavior interpreted from just the traces and some knowledge of their physiology. It’s almost as if science has predictive power. Who’d have thought? (Photograph by Anthony Martin.)

With the “resting trace = rehydration” hypothesis now supported by both traces and direct observation, I wrote the results into a formal, peer-reviewed paper. Unexpectedly, such traces had never been documented for ghost crabs, and especially from the perspective of a paleontologist. In the paper, published in 2006, I pointed out that this behavior would explain similar-looking trace fossils in the geologic record, or the preservation of crab bodies frozen in the same position by death, perhaps reaching the surf too late and being buried by wave-borne sands. The geological significance of such trace fossils would be their value in pointing exactly to where the surf may have washed across an ancient shore, millions of years ago. Geologists really like this kind of precision, and become grateful to ichnologists who give them such tools they can easily use in the field.

A fossil crab from the Miocene Epoch (about 15 million years old), preserved in a sandstone bed cropping out on a beach near Comodora Rivadavia, Argentina. This crab and others like it in the sandstone were all preserved the same way: nearly entire, implying they were buried quickly, and parallel to the original sandy surface on which they settled. Could these have died after dehydration near the surf, and then been buried? How long ago did some crabs evolve to become semi-terrestrial? I don’t know, but now we have a hypothesis that can be applied to fossils like these and tested. (Coin is about 2.5 cm (1 in) wide; Photograph by Anthony Martin.)

Since then, I have seen these resting traces on the beaches of every Georgia barrier island, in the Bahamas, and other places where ghost crabs dwell. Although trace fossils echoing this behavior in ghost crabs or their ancestors have not yet been found, I predict that with the right images now in mind, geologists and paleontologists will recognize them some day.

So with this ichnological lesson from ghost-crab traces, I hope they have become just a bit less “ghostly” and much more alive in your imaginations.

Further Reading

Duncan, G.A. 1986. Burrows of Ocypode quadrata (Fabricus) as related to slopes of substrate surfaces. Journal of Paleontology, 60: 384-389.

Martin, A.J. 2006. Resting traces of Ocypode quadrata associated with hydration and respiration: Sapelo Island, Georgia, USA. Ichnos, 13: 57-67.

Wolcott, T. G. 1978. Ecological role of ghost crabs, Ocypode quadrata (Fabricius) on an ocean beach: Scavengers or predators? Journal of Experimental Marine Biology and Ecology, 31: 67-82.

Wolcott, T. G. 1984. Uptake of interstitial water from soil: mechanisms and ecological significance in the ghost crab Ocypode quadrata and two gecarcinid land crabs. Physiological Zoology, 57: 161-184.