Flight of the Quahogs

Let’s try a science-education experiment. Give a child a live clam and ask, “Can this animal fly?” and I predict her or his answer – accompanied by much giggling – will be “No!’ But if you ask, “Can you fly?”, the answer may change, especially if this child has already flown on an aircraft. So of course humans can fly, but to do this, they require machines, paragliders, or other technological aids in order to move through the air and – this is important – arrive on the ground safely.

Shattered-Quahogs-Pier-Jekyll-IslandFor clams that try to fly, they end up with more than shattered dreams. How did these clams (Mercenaria mercenaria, also known as quahogs or “hard clams”) end up doing Humpty-Dumpty impressions on a wooden pier? Please read on. (Photograph by Anthony Martin, taken on Jekyll Island, Georgia.)

In a similar way, clams can fly. They just need a little help from other animals that can fly and willingly give them a temporary lift from the earth they and their molluscan relatives have known for all of their evolutionary history. Compared to most of our forays into the air, though, these flights are much more limited. Clam aerial exploits are brief and mostly vertical, with little time for them to appreciate the view from above or otherwise experience unusual sensations. They go up, then they come down, and fast.

Clams do not have landing gear. So they can hit the ground hard, especially if their free fall happened after a lengthy trip up into the air and the ground surface is hard: think of a sandflat at low tide, a paved parking lot, or a wooden boardwalk. A a result, the most common end to clam flights is a shattered shell, which is quickly followed by the demise of the clam as it is consumed by the very same animal that bestowed it with flight, however brief and self-serving.

Impact-Trace-Seagull-Clam-DropTraces of a unidirectional vertically oriented clam flight (otherwise known as “falling”) that did not end well for the clam, but worked perfectly for the flying animal that took it for a ride. Notice the impact trace on the hard sandflat, outlining the ribbed shell of the clam (probably Dinocardium robustum) and bits of shell. Most of the probably-still-alive-but-definitely-dying animal  was dragged off to a nearby spot so that its soft parts could be eaten by the same perpetrator that took it for a ride. (Photograph by Anthony Martin, taken on Sapelo Island, Georgia.)

So just what flying animals do such dastardly deeds, taking hapless clams up for a ride, only to drop them to a certain death? By now the gentle reader has probably figured out birds are responsible for this blatant bivalvicide, and some may have already known that seagulls are the most likely culprits. In some coastal areas and during low tides, some seagulls fly over exposed sandflats and mudflats, searching for the outlines of clams buried below the surface. These avian ichnologists then swoop down, land, pick up the clam with their beaks, take off, and then once high enough, they drop them, serving up instant raw clam on the half (or quarter, or eighth) shell. Typically all that is left is a jigsaw puzzle of clamshell pieces and the seagull perpetrator’s footprints, but with the latter only evident on muddy or sandy surfaces amenable to preserving tracks.

Seagull-Tracks-Eaten-ClamIchnological evidence of who killed the clam, provided by the tracks a laughing gull (Larus altricilla).The other half of the shell was broken by its falling onto the sandflat elsewhere, then the gull carried its clam on the half-shell to a more scenic place for its meal. (Photo by Anthony Martin, taken on Little St. Simons Island, Georgia.)

I found this behavior so compelling that I started my book Life Traces of the Georgia Coast (2013) with a story about a laughing gull (Larus altricilla) and the traces of its unwitnessed predation on an Atlantic cockle (Dinocardium robustum), seagull behavior on the Georgia coast. I was not the first person to note this method of clam-smashing by seagulls, as it has been documented by other scientists in parts of the U.S. and abroad, and has been caught on video. Amazingly, though, despite more than 15 years of visiting the Georgia coast, I had never actually witnessed seagulls dropping clams. instead I had only performed post-mortem forensics, in which I would find broken clamshells on hard sandflats accompanied by seagull tracks, telling tales of murder most fowl.

Video footage of a western gull (Larus occidentalis) picking up a clam, flying up about 10 meters (> 30 feet), and dropping it onto rocks to crack it open. After this doesn’t work the first time – and after shooing away a potential clam-stealing rival – it tries again, and is presumably successful. It’s almost as if this gull is using a scientific methodology, isn’t it? (The videographer is only credited as ‘Trisera’ on the YouTube page, and I don’t know where it was filmed, but suppose it’s on the western coast of the U.S.)

Seagull-Cockle-Predation-DiagramHere’s the first illustration a reader will see in my book, Life Traces of the Georgia Coast (2013, Indiana University Press), which I drew to provide a visual forensic analysis of how an Atlantic cockle met its demise at the hands of – er, I mean, wings and bill of – a laughing gull. Part (a) depicts the gull landing after recognizing the outline of the cockle from the air, stopping, and extracting it from the sandflat. Part (b) shows where the cockle was dropped and broken successfully, accompanied by the gull landing and trampling the area as it enjoyed its clam dinner.

This meant I was more than overdue to get visual confirmation of gulls killing clams, which was finally granted just a few weeks ago during a recent trip to Jekyll Island (Georgia). It was the day after I had given an invited talk at the annual meeting of The Initiative to Protect Jekyll Island environmental group, and while my wife Ruth and I were relaxing before leaving the island, but of course were also observing whatever nature we could.

In that spirit, and while sitting on a deck on the west side of the island and looking at a mudflat (in between swatting sand gnats), we noticed a seagull flying about 10 meters (>30 feet) above a wooden pier. At one point, it paused its ascent, and we saw an object fall from its mouth and down toward the pier. Thunk! We clearly heard the impact of the object correlate with what we saw, and with much excitement realized that we had just witnessed seagull clam-cracking for the first time.

Jekyll-Island-Mudflat-Dead-Clams A mudflat replete with mud snails (probably Ilyanassa obseleta), grazing away and making gorgeous meandering trails on the western side of Jekyll Island (Georgia). But wait, what are those big white chunks on the same surface?

Dead-Clams-Mudflat-Jekyll-IslandWhy, look at that: hard clams (Mercenaria mercenaria) in an unnatural state, i.e., disarticulated, broken, and dead on the surface of the mudflat. These clams normally burrow into and live under the mud, and usually manage to stay intact if they stay below the surface. The pieces of clams here must have bounced off the wooden pier, which is casting a shadow in the lower right-hand side of the picture. (Both preceding photographs by Anthony Martin and taken on Jekyll Island, Georgia.)

What was most surprising to me about this broken-shell assemblage on the pier was how it was represented only by the hard clam, or quahog (Mercenaria mercenaria). These thick-shelled clams are quite common in sparsely vegetated muddy areas of salt marshes, burrowing into the mud and connecting their siphons to the surface so that they can filter out suspended goodies in the water during high tides. During low tides, however, they become vulnerable to avian predation. Despite being “hidden” in the mud, somehow the seagulls spotted them from the air, landed next to them on the mudflat, and pulled them out of the mud. They then used the nearby pier as an anvil, and the clam’s hard, thick shell unwittingly became its own hammer when they hit the pier after falling from a fatal height.

Shattered-Quahogs-Jekyll-Pier-MartinThe horror, the horror: a clam killing “ground,” thoughtfully supplied by humans for seagulls in the form of a long, hard, wooden pier. (Photograph by Ruth Schowalter and Yours Truly for scale, taken on Jekyll Island, Georgia.)

OK, now it’s time to think about broken clams and deep time. If you found such an assemblage of broken shells of the same species of thick-shelled clams in a geologic deposit, how would you interpret it? Would you think of these broken shells as predation traces, let alone ones made by birds? Which also prompts the question, when did seagulls or other shorebirds start using flight and hard surfaces to open clams? Did it evolve before humans, and if so, was it passed on as a learned behavior over generations as a sort of “seagull culture”?

All of these are good questions paleontologists should ask whenever they look at a concentration of broken fossil bivalves that are all of the same species, and overlapping with the known geologic range of shorebirds. In short, these may not be “just shells,” but evidence of birds using gravity-assisted killing as part of their predation portfolio.

Ghost Shrimp Whisperer

When you hear the word “shrimp,” you probably picture those that show up in grocery stores and restaurants throughout the world, which are then consumed voraciously by their terrestrial admirers. Also, some recent attention has been given to mantis shrimp, and deservedly so, because they are among the most gorgeous and terrifying of marine invertebrates today. But there are other marine crustaceans bearing the name “shrimp” that are neither gracing seafood buffets nor awesome predators, yet are worthy of our adoration, documentary films, and epic songs, the latter of which will be no doubt performed on Eurovision 2014. Yes, you guessed it: I’m talking about ghost shrimp.

Ghost-Shrimp-Burrow-Tracks-JekyllWhat’s this? We’re looking down on the surface of a Georgia beach at low tide. The collapsed top of a ghost shrimp burrow is in the lower left, but it’s connected to a trackway, which ends in a shallow horizontal burrow, which holds the maker of all three types of traces. Lots of other ghost-shrimp burrow tops are in the upper part of the photo, too. Life doesn’t get much better than this for an ichnologist. You may now envy me. (Photo by Anthony Martin, taken on Jekyll Island, Georgia; scale in centimeters. )

Why ghost shrimp? Because they can burrow like nobody’s business. Take a typical ghost shrimp in the Bahamas or the Caribbean, such as Glypterus acanthochirus. This crustacean is only about 10-cm (4-in) long, but if it lives for eight years and burrows continuously through that time, it will have processed a cubic meter of sediment. Individual ghost-shrimp burrows can go as deep as 5 m (16 ft). These would be like a human shoveling more than a cubic kilometer of dirt, or a vertical shaft about 100 m (330 ft) deep, but without a shovel, backhoes, augers, drilling rigs, or other tools. These vertical shafts then connect with extensive branching tunnels, making complicated networks in the sand and mud below the level of the low tide. Now multiply that industriousness by millions, and we’re talking about enormous volumes of sediment processed by ghost shrimp in their respective shallow-water environments. Ghost shrimp are like the ants of the ocean, only not as organized: no queens, workers, soldiers, or other divisions of labor, just lots of individual shrimp burrowing, eating, mating, and defecating.

Ghost-Shrimp-Burrow-TopsEvery one of these holes is the top of an occupied ghost-shrimp burrow. Now imagine meters-long vertical shafts from each of these going down into the beach sand, then turning into branching horizontal networks of such grandeur, they would further embarrass naked moles rats, which are already apologizing for how they look. (Photo by Anthony Martin, taken on Sapelo Island, Georgia. Human foot (upper right), still attached to human, for scale.)

Ghost shrimp share a common ancestor with crabs, lobsters, crayfish, and shrimp, all of these having four pairs of walking legs and one pair of claws. (Mantis shrimp are actually not true shrimp – or even decapods – but stomatopods.) Ghost shrimp are also known by marine biologists and ichnologists as callianassid shrimp, belonging to an evolutionarily linked group (clade), Callianassidae.They burrow through sand and mud using their front two claws, but also carry sediment on their other legs. Ghost shrimp are also well-known for depositing much of the mud on Georgia beaches as elegantly packaged little cylindrical fecal pellets. These bear enough of a resemblance to “chocolate sprinkles” on cupcakes that they become tempting to sample, until you remember that they’re, like, you know, fecal.

Ghost-Shrimp-Fecal-PelletsGhost-shrimp fecal pellets, each about 5 mm long, and recently ejected by a ghost shrimp through the top of the burrow, which is the little hole just to the right. If you use them with any cupcake recipes, let me know how that worked for you. (Photo taken by Anthony Martin on St. Catherines Island, Georgia.)

Geologists love ghost shrimp, too, because of how their burrows are so numerous, fossilize easily, and are sensitive shoreline indicators. I wrote about this before with regard to how geologists in the 1960s were able to map ancient barrier islands of the Georgia coastal plain by looking for trace fossils of these burrows. Since then, geologists and paleontologists have identified and applied these sorts of trace fossils worldwide, and in rocks from the Permian Period to the Pleistocene Epoch.

I could prattle on about ghost shrimp and their ichnological incredibleness for the rest of the year, but will spare you of that, gentle reader, and instead will get to the point of this post. Just when I thought I’d learned nearly everything I needed to know about ghost-shrimp ichnology, one shrimp decided I needed to have my eyes opened to some traces I had never seen them make before just a few months ago. I mentioned these traces briefly in a previous blog post, when I was teaching undergraduate students from my barrier-islands class on Jekyll Island (Georgia) in mid-March. They were tracks and a shallow horizontal burrow made on the surface on the northernmost beach of Jekyll Island, and they were made by a ghost shrimp. How do I know they were made by a ghost shrimp? Well, maybe because they had a ghost shrimp attached to them, but that’s beside the point.

Ghost-Shrimp-Tracks-Burrow-Left-JekyllA close-up of the left side of the trackway shows more clearly how it definitely is connected to the funneled top of a burrow. The trackway shows small pointed impressions and a central groove in places, showing that this is an animal with legs and a tail, respectively. The irregular path of the trackway is a record of pauses, where the trackmaker stopped briefly before moving on. The body length of the tracemaker is subtly revealed along the way too, but explaining that would require a more advanced lesson in ichnology. So maybe another time. (Photo by Anthony Martin, taken on Jekyll Island, Georgia.)

Ghost-Shrimp-Tracks-Burrow-Right-JekyllThe right side of the trackway, ending in a short and shallow horizontal tunnel, just under the sandy beach surface. (Photo by Anthony Martin, taken on Jekyll Island, Georgia.)

Ghost-Shrimp-Tracks-Burrow-Closeup-JekyllThe trackway and tail-trail ends in a tunnel with a thin roof of sand. The bilobed pattern was made by the claws and other legs on either side moving sand up and around the body of the tracemaker. Notice the roof collapsed a little on the right, and that its tail is sticking out on the left: kind of like hiding under a too-short blanket. (Photo by Anthony Martin, taken on Jekyll Island, Georgia.)

Ghost-Shrimp-JekyllTa-da – the tracemaker revealed! I’m fairly sure this is a Georgia ghost shrimp (Biffarius biformis), but would appreciate all of those marine biologists out there to correct me if I’m wrong. (And not those fake marine biologists, either.) Rest assured, after showing it to my students and allowing them to photograph it, I put it back in the ocean, where it burrowed happily ever after. Unless it died, that is. (Photo by Anthony Martin, taken on Jekyll Island, Georgia.)

What truly amazed me about these traces, though, was their rarity. As I shared with my students, in more than 15 years of field work on the Georgia coast, I had never seen anything like this sequence of traces. Even better, the tracemaker was right there, and like the period at the end of a sentence in the story.

Furthermore, the story told by these traces was that something must have threatened the life of this shrimp to cause it to behave in such an unusual way. These shrimp almost never see the light of day, and prefer to stay deep in their burrows, away from the prying eyes and beaks of shorebirds, fish, and other predators. Consequently, they remain largely invisible to humans; hence the “ghost” part of their nickname. This means something very bad must have happened to this one in its burrow, prompting it to abandon its refuge and expose itself so vulnerably. It would be like a fire forcing people out of their fortified underground bunkers, but when they know tyrannosaurs are lurking just outside. Damned if you do, damned if you don’t, but something in this ghost shrimp’s evolutionary program made it take the path of the lesser damned.

What happened? Did a predator find its way into the burrow and chase it out? Was it a chemical cue of some sort, like oxygen-poor water flooding into the bottom of its burrow? Was it competition from another ghost shrimp, evicting it from its home? Was it a mate that decided it had enough of sharing this burrow and needed some “alone time,” or took up with another more comely shrimp? I don’t know, but it made for a good little mystery, yet another posed by life traces on a Georgia beach, and one I was delighted to discover and share with my students on Jekyll Island.

Doing Field Work on a Developed Barrier Island

The second day of our Barrier Islands class field trip (Sunday, March 10), which is taking place along the Georgia coast all through this week, involved moving one island north of Cumberland (mentioned in this previous post), to Jekyll Island. I’ve been to Jekyll many times, but none of my students had, so they didn’t quite know what to expect other than what I had told them.

For one, I warned the students that Jekyll was not at all like Cumberland, which is under the authority of the U.S. National Park Service as a National Seashore. Consequently, it has a few residents, but is limited to less than 300 visitors a day. In contrast, many more people visit or live on Jekyll, and people have modified it considerably more. For example, Jekyll has a new convention center, regularly sized and miniature golf courses, a water park, restaurants, bars, and other such items absent during most of its Pleistocene-Holocene history. Another difference is that a ferry was need to get onto Cumberland, whereas we could drive onto Jekyll and stay overnight there in a hotel.

So why go there at all with a class that is supposed to emphasize the geology, ecology, and natural history of the Georgia barrier islands? The main reason for why I chose Jekyll as a destination for these students was so they could see for themselves the balance (or imbalance) between preserving natural areas and human development of barrier islands. Jekyll is one of those islands that is “in between,” where much of its land and coastal areas have been modified by people, but patches of it retain potentially valuable natural-history lessons for my students.

So what you’ll see in the following photos will focus on those more natural parts of Jekyll island, with some of the wonders they hold. However, this series of photos will end with one that will shock and horrify all. Actually, you’ll probably just shake your head and sigh with rueful resignation at the occasional folly of mankind, especially when it comes to managing developed barrier islands.

We started our morning like every day should start, with ichnology. Here, tracks of a gray fox, showing direct register (rear foot stepping almost exactly into the front-foot impression) cut between coastal dunes on the south end of Jekyll Island. The presence of gray foxes on Jekyll has caused some curiosity and concern among residents, with the latter emotion evoked because these canids are potential predators of ground-nesting birds, like the Wilson’s plover. Also, people have no idea how many foxes are on the island. If only we had some cost-effective method for detecting their presence, estimating their numbers, and interpreting their behavior. You know, like tracking.

My students show keen interest in the gray fox tracks, especially after I tell them to show keen interest as I take a photo of them. Funny how that works sometimes.

A Wilson’s plover! At least, I think it is.( Birders of the world, please correct me if this is wrong. And I know you will.) We spotted a pair of these birds traveling together on the south end of the island, causing much excitement among the photographers in our group blessed with adequate zoom capabilities on their cameras. Wilson’s plovers are ground-nesting birds, and with both gray foxes and feral cats on the island, their chicks are at risk from these predators. Again, if only we had some cost-effective method for discerning plover-cat-fox interactions. Tracking, maybe?

Here’s a little secret for shorebird lovers visiting Jekyll Island. Walk around the southwest corner of the island, and you are almost assured of seeing some cool-looking shorebirds along the, well, shore, such as these American oystercatchers, looking coy while synchronizing their head turns. These three were part of a flock of about twenty oystercatchers all traveling together, which I had never seen before on any of the islands. If you go walking on Jekyll, and know where to walk, you’ll see some amazing sights like this.

You were probably all wondering what American oystercatcher tracks look like, especially those made by ones that are just standing still. Guess this is your lucky day. Also notice the right foot was draped over the left one, causing an incomplete toe impression on the right-foot one. Wouldn’t it be nice to find a trace fossil just like this?

Black skimmers! We didn’t get to see them skim, but we still marveled at this flock of gorgeous shorebirds. These were in front of the oystercatchers, with an occasional royal tern slipping into the party, uninvited but seemingly tolerated.

Yeah, I know, you also wanted to know what black skimmer tracks look like. So here they are. Now you don’t need to use a bird book to identify this species: just look at their tracks instead!

You think you’re bored? Try being driftwood, with marine clams out there adapted for drilling into your dead, woody tissue. This beach example prompted a nice little lesson in how this ecological niche for clams has been around since at least the Jurassic Period, which we know thanks to ichnology. You’re welcome (again).

Beach erosion at the southernmost end of Jekyll gave us an opportunity to see the root systems of the main tree species there, such as this salt cedar (actually, it’s a juniper, not a cedar, but that’s why scientists use those fancy Latinized names, such as Juniperus virginiana). My students are also happily learning to become the scale in my photos, although I suspect they will soon tire of this.

Look at this beautiful maritime forest! This is what I’m talking about when I say “…patches of it [Jekyll Island] retain potentially valuable lessons in natural history.” This is on the south end of the island, and this view is made possible by walking just a few minutes on a trail into the interior.

Few modern predators, invertebrate or vertebrate, provoke as much pure unadulterated giddiness in me as mantis shrimp. So imagine how I felt when, through sheer coincidence, a couple walked into the 4-H Tidelands Nature Center on Jekyll, while I was there with my class, and asked if I identify this animal they found on a local beach. The following are direct quotations from me: “Wow – that’s a mantis shrimp!! Squilla empusa!! It’s incredible!!” I had never seen a live one on the Georgia coast, and it was a pleasure to share my enthusiasm for this badass little critter with my students (P.S. It makes great burrows, too.)

A stop at the Georgia Sea Turtle Center on Jekyll was important for my students to learn about the role of the Georgia barrier islands as places for sea turtles to nest. But I had been there enough times that I had to find a way to get excited about being there yet again. Which is why I took a photo of their cast of the Late Cretaceous Archelon, the largest known sea turtle. I never get tired thinking about the size of the nests and crawlways this turtle must have made during the Cretaceous Period, perhaps while watched by nareby dinosaurs.

At the north end of Jekyll, shoreline erosion has caused the beach and maritime forest to meet, and the forest is losing to the beach. This has caused the forest to become what is often nicknamed a “tree boneyard,” in which trees die and either stay upright or fall in the same spot where they once practiced their photosynthetic ways.

Quantify it! Whenever we encountered dead trees with root systems exposed, I asked the students to measure the vertical distance from beach surface to the topmost horizontal roots. This gave an estimate of the minimum amount of erosion that took place along the beach.

Perhaps a more personal way to convey the amount of beach erosion that happened here was to see how it related to the students’ heights. It was a great teaching method, well worth the risk of being photobombed.

Are you ready? Here it is, in three parts, what was without a doubt the traces of the day. Start from the lower left with that collapsed burrow, follow the tracks from left to right, and look at that raised area on the right.

A close-up of the raised area shows a chevron-like pattern, implying that this was an animal that had legs, and knew how to use them. Wait, is that a small part of its tail sticking out of the left side?

Violá! It was a ghost shrimp! I almost never see these magnificent burrowers alive and outside of their burrows, and just the day before on Cumberland Island, the students had just learned about their prodigious burrowing abilities (the ghost shrimp, that is, not the students). I had also never before seen a ghost shrimp trackway, let alone one connected to a shallow tunnel on a beach. An epic win for ichnology!

This may look like soft-serve ice cream, but I suspect that it’s not nearly as tasty. It’s the fecal casting of an acorn worm (Balanoglossus sp.), and is composed mostly of quartz sand, but still. These piles were common on the same beach at the north end of Jekyll, but apparently absent from the south-end beach. Why? I’m guessing there was more food (organics) provided by a nearby tidal creek at the north end. But I’d appreciate all of those experts on acorn worms out there to augment or modify that hypothesis.

This is how dunes normally form on Georgia barrier-island beaches: start with a rackline of dead smooth cordgrass (Spartina alterniflora), then windblown sand begins to accumulate in, on, and around these. Throw in a few windblown seeds of sea oats and a few other dune-loving species of plants, and next thing you know, you got dunes. Dude.

In contrast, here is how not to form dunes on Georgia barrier-islands beaches. Build a concrete seawall on the middle part of the island, truck in thousands of tons of metamorphic rock from the Piedmont province of Georgia, place the rocks in front of the seawall, and watch the beach shrink. So sad to see all of that dune-building smooth cordgrass going to waste. Anyway, the contrast and comparison you just saw is also what my students experienced by standing in both places the same day.

Jekyll Island gave us many lessons, but we only had a day there. Which islands were next? St. Simons and Little St. Simons, with emphasis on the latter. So look for those photos in a couple of days, in between new exploits and learning opportunities.





How Did Freshwater Crayfish Get on a Barrier Island?

Two weeks ago, during an all-too-brief visit to Jekyll Island (Georgia) over the Thanksgiving holiday weekend, I decided to check in on some old friends. When I was first introduced to them about four years ago (2008), their presence on Jekyll was a big surprise for me. But thanks to their distinctive traces and a little bit of detective work, I now know they’re on other Georgia barrier islands, too.

Why look, miniature volcanoes in the middle of a maritime forest on Jekyll Island! Or, could they be something else? (In science, that’s what we like to call an “alternative hypothesis.”) Photo scale (left) in centimeters. (Photograph by Anthony Martin.)

These “friends” were conical towers, which look like small lumpy volcanoes (stratovolcanoes, that is, not shield volcanoes), were the traces of freshwater crayfish. A few of the structures, composed of piled balls of sandy mud, also had circular holes in their centers, and they had all seemingly popped out of the forest floor along the edge of a pool of fresh water. All I needed to do to find them was look in the same place where I was first introduced to them, which was by a Jekyll Island resident who knew about their whereabouts.

The towers were 10-25 cm (4-6 in) wide at their bases, 7-10 cm (3-4 in) tall, and each of the rounded, oval balls of sediment was about 1-1.5 cm (0.4-0.6 in) wide. The overall appearance of the towers said “still fresh,” having not been appreciably weathered, and all that I saw in the area looked about the same age. Knowing a little bit about crayfish behavior, I figure they were made just after the last rainfall on Jekyll, maybe a week or so before I spotted them.

Close-up of a crayfish tower, with a circular hole in the center (that’s the burrow). Scale in centimeters. (Photograph by Anthony Martin, taken on Jekyll Island, Georgia.)

Crayfish that dig burrows adjust their depth according to the water table, which they must do to stay alive because they have gills. If the water table drops, they burrow deeper, but if the water table rises, they move their burrows up. For example, where I live here in the metro Atlanta area, crayfish towers often pop up in people’s backyards the day after a hard rain. (This also means that these people need to get flood insurance, because their backyards are on a floodplain. Thus also demonstrating yet another practical reason to know a little basic ichnology.)

Burrowing was (and still is) accomplished by crayfish using their prominent claws (chelipeds) as spades, rolling up the balls of sediment and placing them outside of the burrow entrance, and thus building up towers. But they also smooth out burrow interiors with their bodies through up-and-down and back-and-forth movement, resulting in their burrows having near-perfect circular cross sections. Crayfish burrow systems can be complicated, with vertical shafts connecting the surface with the below-ground parts, which can consist of branching horizontal tunnels and chambers; the last of these can even be occupied by multiple crayfish.

When I first saw these these towers and burrow cross-sections on Jekyll Island in 2008, I immediately knew they were from crayfish. My certainty was because such traces had been described in loving detail by crayfish researchers and ichnologists, linking these directly to their crustacean makers. In fact, just a few months ago, I saw an example of this connection between traces and tracemakers in my home of Decatur, Georgia, where the drying of a human-made pond there caused the crayfish to burrow into the former pond bottom and move about on its sediments in a desperate attempt to stay wet.

A high density of crayfish burrows in a recently drained human-made pond in Decatur, Georgia. Note the similarity of the towers, circular burrow cross-sections, and rounded balls of sediment to those of the Jekyll Island crayfish burrows. Scale with centimeters. (Photograph by Anthony Martin.)

“Are you looking at me?” Crayfish, about 5 cm (2 in) across, and probably a species of Procambarus, copping an attitude while guarding its burrow entrance. (Photograph by Anthony Martin, taken in Decatur, Georgia.)

With about 70 species documented in the state, Georgia is quite rich in crayfish diversity, qualifying it and bordering states in the southeastern U.S as a “biodiversity hotspot” for these animals. Freshwater crayfish are also geographically widespread – occurring in North and South America, Europe, Madagascar, Australia, New Zealand, New Guinea – a direct result of plate tectonics, which spread and isolated populations from one another during their evolutionary history.

In terms of that history, these crustaceans (decapods, more specifically) split from a common ancestor with marine lobsters about 240 million years ago, an age based on molecular clocks, which have been integrated with fossil evidence. I’ve also seen trace fossils that look very much like crayfish burrows in Late Triassic rocks, from about 210 million years ago, which suggests that burrowing began in this lineage early in the Mesozoic Era.

In a 2008 article I co-authored and published with six other scientists – three paleontologists and three zoologists – we described fossil burrows in rocks from the Early Cretaceous Period (about 115-105 million years ago) of Australia, and named what is still the oldest fossil crayfish in the Southern Hemisphere, Palaeoechinastacus australanus. In this article, we pointed out how burrowing was an adaptation that likely helped these crayfish survive polar winters in Australia during the Cretaceous, but also how burrowing abilities in general have given crayfish an upper claw, er, hand in making it past environmental crises in the geologic past.

Here’s the oldest known fossil freshwater crayfish in Australia and the rest of the Southern Hemisphere, Palaeoechinastacus australanus (= “ancient spiny crayfish of Australia”), found in 105-million-year-old rocks (Early Cretaceous) of southern Victoria. Not everything is there, but you can see most of its tail to the left and the right-side legs. Specimen is Museum Victoria, Melbourne, Australia. (Photograph by Anthony Martin.)

And here’s a bedding plane (horizontal) view of trace fossils attributed to freshwater crayfish burrows, preserved in 115-million-year-old rocks (also Early Cretaceous) near Inverloch, Victoria (Australia). The burrows were filled with sand originally, which cemented differently from the surrounding sediment, making them stand out in positive relief as they weather on the outcrop. Scale = 10 cm (4 in). (Photograph by Anthony Martin.)

So how did these crayfish get onto the Georgia barrier islands? Before answering that, I can tell you how they did not get there, which was from people. Because these are burrowing (infaunal) crayfish, and not ones that hang out on lake or stream bottoms (also known as epibenthic), it’s not very likely that humans purposefully introduced them on the islands for aquaculture. Let’s just say that digging up each crayfish burrow, which may or may not contain a crayfish, would require too much work to make crayfish etoufee worth the effort, no matter how good your recipe might be.

Mmmmm, flavorful freshwater decapod concoction [drooling sounds]. But first imagine having to dig up every single crayfish for this dish. Just to prevent this from happening, your recipe should have some qualifying statement, such as, “Make sure to use epibenthic crayfish, not infaunal ones!” (Original image, modified slightly by me, from Wikipedia Commons here.)

Another point to remember about crayfish is that they are freshwater-only animals, incapable of tolerating salt-water immersion, let alone swimming kilometers through marine-flavored waters to reach offshore islands. Yet I’ve seen their traces on Jekyll and two other Georgia barrier islands, and crayfish species have been reported from two additional islands. (For now I won’t say which other islands or identify the probable species of these crayfish until they’ve been properly studied. Sorry.)

What might seem strange to most people, though, is that I still haven’t seen a single living crayfish on any of the Georgia barrier islands. Nonetheless, seeing and documenting their traces is good enough for me to know where they’re living and how they’re behaving. This again demonstrates one of the many advantages of ichnology: you don’t actually have to see an animal to know it’s there, just as long as it leaves lots of identifiable traces.

Oh yeah: almost forgot about the title of this post. What’s my explanation for how the crayfish got to the islands, including Jekyll? I think they lived on the islands before they were islands. In other words, present-day crayfish on the islands descended from ones that originally lived on the mainland part of Georgia, but these were cut off from their original homeland by the last major sea-level rise (well before the current one, that is). This rise started as long as 11,000 years ago, when the last great ice age of the Pleistocene ended, shedding water from continental glaciers and expanding the seas.

So think of a salty moat filling in the low areas between what are now the Georgia barrier islands and the rest of Georgia, with crayfish on either side of it, metaphorically waving goodbye to one another with their claws. In this scenario, the crayfish of the Georgia barrier islands may represent relics left behind and isolated from their ancestral populations. They may have even undergone genetic drift and became new species, or are well on their way to reproductive isolation from their mainland relatives. But that’s just speculation on my part right now. Like I said, these critters need to be studied before anything can be said about them.

All of this neatly illustrates how our knowledge of the geological past ties in with the present, as well as how ichnology can be applied to conservation biology. With regard to the latter, these little muddy crayfish towers exemplify one of the dangers associated with any rapid, careless development of the Georgia barrier islands. What if most people aren’t aware of the unique plants and animals on the islands because at least some of this biodiversity lies below their feet? Without such knowledge, unheeded development may very well wipe out rare or previously unknown species that have been part of the ecological legacy of the Georgia coast for the past 10,000 years.

This is one of many reasons why environmental protection of the islands is still needed, even on semi-developed one like Jekyll. Fortunately, motivated people are working toward such protection on Jekyll, and most other Georgia barrier islands are under some sort of state or federal protection, or privately owned as preserves.

Nice maritime forest you got there. It’d be a shame if something happened to it. (Photograph by Anthony Martin, taken on Jekyll Island.)

What’s also happened on Jekyll Island is increased ecotourism, highlighted by the success of the Georgia Sea Turtle Center. The center, which opened in 2007, has a rehabilitation center for injured turtles, educates the public about sea turtles nesting on the Georgia coast, and helps to monitor turtle nests on Jekyll during the nesting season. And just how is this monitoring done? By looking for tracks of the nesting mothers on the beaches of Jekyll during nesting season, of course. (Say, didn’t I say something previously about using ichnology in conservation biology?)

So can a Jekyll Island Crayfish Center be far behind? Um, no. Still, it’s time to start thinking of species on the Georgia barrier islands and their traces as assets, bragging points that can be used to bolster ecotourism on the coast. Barrier-island biodiversity is an economic resource that will continue to pay off as long as the species survive and their habitats are protected, while simultaneously feeding our sense of wonder at how these species, including burrowing freshwater crayfish, got to the islands in the first place.

Further Reading

Breinholt, J., Ada, M. P.-L., and Crandall, K.A. 2009. The timing of the diversification of the freshwater crayfish. In Martin, J.W., Crandall, K.A., and Felder, D.L. (editors), Decapod Crustacean Phylogenetics, CRC Press, Boca Raton, Florida: 343-355.

Hobbs, H.H., Jr. 1981. The Crayfishes of Georgia. Smithsonian Institute Press, Washington, D.C.: 549 p.

Hobbs, H.H., Jr. 1988. Crayfish distribution, adaptive radiation and evolution. In: Holdich, D.M., Lowery, R.S. (editors), Freshwater Crayfish: Biology, Management and Exploitation. Croom Helm, London: 52-82.

Martin, A.J. 2011. Ichnology in a time of climate change: predicted effects of rising sea level and temperatures on organismal traces of the Georgia coast. Geological Society of America, Abstracts with Programs, 43(2): 86. Link here.

Martin, A.J., Rich, T.H., Poore, G.C.B., Schultz, M.B., Austin, C.M., Kool, L., and Vickers-Rich, P. 2008. Fossil evidence from Australia for oldest known freshwater crayfish in Gondwana. Gondwana Research, 14: 287-296.

P.S. So you’d like to hear more details on the crayfish of the Georgia barrier islands? Well, then you’re going to have to read my book, which starts out Chapter 5 (on terrestrial invertebrate traces) with a section titled The Crayfish of Jekyll Island. Yes, that’s a sales pitch, but you can also request your public library to get it, or borrow a copy from a friend. Which makes this more of a “knowledge pitch.”

Deer on a Beach

In the southeastern U.S., the most common large herbivorous mammal native to this region is the white-tailed deer (Odocoileus virginianus). Accordingly, deer traces, such as their tracks, trails, scat, and chew sign are abundant, easy to identify, and interpret. Some of these traces I discuss in my upcoming book, which has, like, you know, the same title as this blog. (Oh, all right, here’s the link.) But since writing the book, I’ve encountered many more examples of deer traces that surprise me, with implications for better understanding the behavioral flexibility of these mammals.

Yours Truly taking a break from biking to look at some deer tracks on a beach. Yes, that’s right: deer on a beach. Which I’ll take any day over, say, snakes on a plane. (Photograph by Ruth Schowalter, taken on Jekyll Island, Georgia.)

The ecology and ichnology of deer is a big subject, and I began writing a much longer post addressing just that, explored in exquisite detail, with stunningly brilliant insights and witty bon mots sprinkled throughout. Fortunately for all of us, I realized I was being a typical perfectionist (and pedantic) academic, instead of just getting to the point of this post. Thus the gentle reader will be spared such a tome for now, and instead I’ll talk about the cool deer traces my wife Ruth and I encountered while on Jekyll Island (Georgia) last week.

For the past four years, Ruth and I have traveled to Jekyll during our Thanksgiving break for a much–needed escape from teaching, grading, and urban environments of Atlanta, trading these in for wide beaches, beautiful salt marshes, fresh air, and exercise. Like previous years, we took our bicycles with us and spent several days there riding on its plentiful bike trails, or on the beaches at low tide.

Jekyll, unlike most other Georgia barrier islands, is partially developed, with about a thousand residents, and is amenable to tourists staying on the island. This made it convenient for us to pull up on Thursday, check into a hotel, saddle up, and start riding. Of course, we don’t just ride our bikes, but we also look for traces and other interesting tidbits of natural history while speeding along Jekyll’s beaches. For example, last year while riding there, we discovered interesting interactions happening between small burrowing clams, whelks, and shorebirds (links to those here and here), a phenomenon we had never noticed before on other Georgia barrier islands.

This year, on a gorgeous Friday morning on the south beach of Jekyll, we breezed past thousands of human and dog tracks, but grew bored with the ichnological homogeneity wrought by these two tracemakers. But then, something different popped out in the midst of these ordinary, domestically produced ones, prompting us to stop and look more closely. These were deer tracks, and from two deer walking together in the intertidal zone of the beach, where a dropping tide had cleaned the beach surface.

A broad expanse of sandy beach on the south end of Jekyll Island, exposed at low tide, and with two sets of deer tracks pointing downslope and then parallel to the shoreline. Note how these trackways are more-or-less equally spaced from one another, implying that the deer were next to one another and maintained their respective “personal spaces” at this point. (Photograph by Anthony Martin.)

We had seen deer tracks on Georgia barrier-island beaches before, but these are typically in the upper parts of Georgia beaches, closer to the dunes and above the high tide mark. Hence these trackways were unusual for us, showing an unexpected foray into a habitat that was not life-sustaining at all for these deer: no food, no cover, no bedding material, or other creature comforts provided by the forests and back-dune meadows. Just open beach.

Still, there they were, so we enjoyed this opportunity to figure out what they were doing while there. For one, we wondered exactly when they were on the beach. Fortunately, this was relatively easy to answer, as one of the nicer aspects of tracking animals in intertidal zones of beaches (other than being on a beach, of course) is that their tracks can be aged accurately in accordance with the tides. In this instance, high tide was in the early morning, at 3:43 a.m., and the low tide was at 10:18 a.m. We spotted the tracks at about 11:30 a.m., so it was still low tide then, but rising. The furthest down-beach extent of the deer tracks was in the middle of the intertidal zone. This implied that about three hours had elapsed after the high tide receded sufficiently to allow the deer to travel this far down the beach slope: so at 6:45-7:00 a.m. Dawn that morning was at 7:00 a.m., so their presence in this area just before dawn also synched well with the well-known crepuscular movements of deer.

Two sets of deer tracks, showing them moving downslope from above the high-tide mark (look at the rackline in the bottom third of the photo), and heading toward a runnel before turning to the left and paralleling the surf zone. You may have also noticed where their trackways cross over further down the beach. Say, looks like there’s some differences in their trackway patterns. I wonder why? (Photograph by Anthony Martin, taken on Jekyll Island.)

Further evidence of the freshness of these tracks was the moistness of the fine-grained sand, still holding their shape. The morning sunlight had dried them slightly along the edges, and especially the plates or ridges (pressure-release structures) outside of the tracks. The ocean breeze coming out of the east, though, was too gentle to have eroded the tracks, so they looked as if they had been made only a few hours before. Which they had.

Tracking deer doesn’t get much easier than this, folks. Fine-grained and well-packed sand, still moist enough to hold the shape of the tracks and pressure-release structures, gentle wind, and fresh tracks, only about four hours old. (Photograph by Anthony Martin, taken on Jekyll Island.)

We backtracked the deer to their entry point on the beach, which was from the eroded scarp of the primary dunes. One deer must have been following the other, as their tracks came together at this point. The lead deer made the decision to step down onto the beach, a drop of a little more than a meter (3.3 ft), and then the second one followed it down.

The decision point, where one of two deer took the lead and stepped down from the primary dunes to the beach (indicated by tracks at top and bottom of the photo). Note the ghost-crab burrow in the middle-right part of the photo, just above the photo scale. (Photograph by Anthony Martin, taken on Jekyll Island.)

What was really interesting for me, as an ichnologist and just a plain ol’ tracker, was to see the differences in how they stepped down and moved once both deer were on the beach. Based on the trackway patterns, the lead deer simply took a big step down, landed with little drama, and began moving in a normal (baseline) gait for a deer, which is a diagonal pattern with indirect and direct register (rear-foot track on top of front-foot track on the same side). In contrast, the second deer leaped nearly two meters from the dune scarp to the beach, landed heavily, and broke into a gallop, denoted by a set of four tracks – both rear footprints ahead of both front footprints – followed by a space, then another set of four tracks.

Me taking a closer look at the tracks of the “jumper,” whose first tracks show up just behind me, whereas the other deer preceding it simply took a big step down. (Photograph by Ruth Schowalter, taken on Jekyll Island.)

A contrast in trackway patterns by deer on a beach: one that made a normal, diagonal-walking pattern with direct or indirect register (rear foot registering totally or partially on the front-foot impression), and the other galloping, in which front feet landed, then were exceeded by both rear feet, followed by a suspension phase. (Photograph by Anthony Martin, taken on Jekyll Island.)

A close-up of those tracks, in which Deer #1 (right) was strolling relaxedly, not kicking up so much sand, whereas Deer #2 (left) was taking sand with it as it forcefully punched through and extracted its feet from the sand while galloping. (Photograph by Anthony Martin, taken on Jekyll Island.)

This stark difference in their gait patterns led me to ask a simple question: why? This is where a bit of intuition came into play, in which I imagined the following scenario:

  • The first deer arrived at the dune scarp first, surveyed the scene, saw no threats in the immediate area, stepped down onto the beach, and walked normally.
  • The second deer, following behind the first, must have temporarily lost sight of the first deer once it stepped off the dune scarp. Not wanting to be left behind, it quickened its pace up to the scarp edge, spied its companion walking nonchalantly down the beach, and jumped.
  • The best way to catch up with its companion from there was to gallop, which it did.

With this hypothesis in mind – that maybe one deer was trying to catch up with the first one to join it – I had to be a good scientist and test it further. Looking down the beach, we saw how the tracks of the walking and the galloping deer eventually crossed one another, with the walking one crossing left, and the galloping one crossing right. Aha! I could use the old tried-and-true method used by generations of geologists, cross-cutting relations! This principle states that whatever cross-cuts another medium (say, a fault cross-cutting bedrock) is the younger of the two events. In this instance, I tracked the galloping deer to where it crossed and stepped on the tracks of the walking deer. Hence it came afterwards, but perhaps only a few minutes later, as the preservational quality of its tracks were identical to the first deer’s tracks. So it was very likely following and trying to catch up with its companion.

Close-up of the where Deer #2 stepped on the tracks of Deer #1 as it tried to catch up. This cross-over point is also where Deer #2 started going to the right of Deer #1, and was on the ocean side of it once they started traveling together, side-by-side. (Photograph by Anthony Martin, taken on Jekyll Island.)

Close-up of where Deer #2 stepped on the tracks of Deer #1 as it crossed its trackway, eventually traveling to the right of Deer #1. Scale in centimeters. (Photograph by Anthony Martin, taken on Jekyll Island.)

The tracks went down-slope for a distance further, and at some point turned to the left (north), showing where they walked next to one another, about 1.5 m (5 ft) apart and paralleling the surf zone. Where did they go from there? We don’t know, but I suspect they soon went back up into the dunes and back-dune meadows, just in time to avoid all of the humans and dogs who would be on the beach in the next few hours following sunrise. Still, the tracks conjured a beautiful image, of two white-tailed deer walking down the beach together, side-by-side, as the sun came up over the ocean to their right.

Not wanting to spend our entire morning tracking these two deer, we said, “OK, that was neat,” and got back on our bikes for more riding. Later, though, while reflecting on this lesson imparted by the deer tracks in a paleontological sense, I extended their range back into prehistory. How might such tracks from terrestrial mammals have been preserved in ancient beach sediments?  If they did get preserved, how would we would recognize them for what they were, or would we just assume they must be traces from some marine-dwelling animal (probably an invertebrate)? And even if we did realize these traces came from big terrestrial mammals, would we have the skills to interpret how two or more animals were affecting each others’ behaviors, which we did so easily with modern, fresh tracks directly in front of us, and knowledge of the daily tides and sunrise? This is the power of ichnology, in which these life traces motivate us to move mentally from the present, to the past, and back again.

As it was, we ended up not seeing a deer during the four days we spent on Jekyll. Nevertheless, we came away with a good story of at least two deer, knowing about their almost-secret trip to the beach, just a few hours before our own.

Further Reading

Elbroch, M. 2003. Mammal Tracks and Sign: A Guide to North American Species. Stackpole Books, Mechanicsburg, Pennsylvania: 779 p.

Halls, L.K. 1984. White-tailed Deer: Ecology and Management. Stackpole Books, Mechanicsburg, Pennsylvania: 864 p.

Hewitt, D.G. (editor). 2011. Biology and Management of White-tailed Deer. Taylor & Francis, Oxon, U.K.: 674 p.

Webb, S.L., et al. 2010. Measuring fine-scale white-tailed deer movements and environmental influences using GPS collars. International Journal of Ecology, Article ID 459610, doi:10.1155/2010/459610: 12 p.


Descent with Modification

At this time last year, Fernbank Museum of Natural History was hosting the Darwin exhibit. On loan from the American Museum of Natural History, this exhibit was a major coup for the museum and the Atlanta area, which has enjoyed a growing culture of celebrating science during the past few years. Along with this exhibit, the museum also planned and concurrently displayed an evolution-themed art show, appropriately titled Selections, which I wrote about then here.*

Descent with Modification (2011), mixed media (colored pencils and ink) on paper, 24″ X 36.” Although this artwork might at first look like a tentacled creature infested with crustaceans and living on a sea bottom, its main form actually mimics a typical burrow system made by ten-legged crustaceans (decapods). Yet it’s also an evolutionary hypothesis. Intrigued? If so, please read on. If not, there are plenty of funny cat-themed Web sites that otherwise require your attention. (Artwork and photograph of the artwork by Anthony Martin.)

One unusual feature of this art show was that five of the eight artists were also scientists (full confession: I was one of them). Furthemore, one of the other artists was married to a scientist (fuller confession: that would be my wife Ruth). The show stayed up for more than three months, which was also as long as the Darwin exhibit resided at Fernbank. Thus we like to think it successfully exposed thousands of museum visitors to the concept that scientists, like many other humans, have artistic inspirations and abilities, neatly refuting the stereotype that not all of us are joyless, left-brained automatons and misanthropes.

Last week I was reminded of this anniversary and further connections between science and art during a campus visit last week by marine biologist and crustacean expert Joel Martin (no relation). Dr. Martin was invited to Emory University to give a public lecture with the provocative title God or Darwin? A Marine Biologist’s Take on the Compatibility of Faith and Evolution. His lecture was the first of several on campus this year about the intersections between matters of faith and science, the Nature of Knowledge Seminar Series. This series was organized as a direct response to the university inviting a commencement speaker this past May who held decidedly strong and publicly expressed anti-science views.

Dr. Martin, who is also an ordained elder in his Presbyterian church and has taught Sunday school to teenagers in his church for more than 20 years, gave an informative, organized, congenial, and otherwise well-delivered presentation to an audience of more than 200 students, staff, faculty, and other people from the Atlanta community. In his talk, Martin effectively explored the false “either-or” choice often presented to Americans who are challenged by those who unknowingly misunderstand or deliberately misrepresent evolutionary theory in favor of their beliefs. Much of what he mentioned, he said, is summarized in a book he wrote for teenagers and their parents, titled The Prism and the Rainbow: A Christian Explains Why Evolution is Not a Threat.

I purposefully won’t mention any of the labels that have been applied to the people and organizations who promote this divisiveness between evolutionary theory and faith. After all, words have power, especially when backed up by Internet search engines. Moreover, it is an old and tired subject, of which I grow weary discussing when there is so much more to learn from the natural world. Better to just say that Martin persuasively conveyed his personal wonder for the insights provided by evolutionary theory, how science informs and melds with his faith, and otherwise showed how science and faith are completely compatible with one another. You know, kind of like science and art.

Previous to his arrival, his host in the Department of Biology asked Emory science faculty via e-mail if any of us would like to have a one-on-one meeting with Dr. Martin during his time here. I leaped at the chance, and was lucky enough to secure a half-hour slot in his schedule. When he and I met in my office, we had an enjoyable chat on a wide range of topics, but mostly on our shared enthusiasm for the evolution of burrowing crustaceans, and particularly marine crustaceans.

Ophiomorpha nodosa, a burrow network in a Pleistocene limestone of San Salvador, Bahamas. In this instance, the burrows were probably made by callianassid shrimp, otherwise known as “ghost shrimp,” and are preserved in what was a sandy patch next to a once-thriving reef from 125,000 years ago. (Photograph by Anthony Martin.)

Interestingly, during this conversation we also touched on on how art and science work together, and I was pleasantly surprised to find out that Dr. Martin is a talented artist, too. It turns out he has illustrated many of his articles with exquisite line drawings of his beloved subjects, marine crustaceans. Yes, I realize that some artists like to draw a line (get it?) between being an “artist” and an “illustrator,” with the latter being held in some sort of disdain for merely “copying” what is seen in nature. If you’re one of those, sorry, I don’t have the time or inclination to argue about this with you. (Now go back to putting a red dot on a white canvas and leave us alone.)

Cover art of branchiopod Lepidurus packardi from California, drawn by Joel W. Martin, for An Updated Classification of the Recent Crustacea, also co-authored by Joel W. Martin and George E. Davis: No. 39, Science Series, Natural History Museum of Los Angeles County, Los Angeles, California.

During our discussion in my office, I pointed out a enlarged reproduction of a drawing of mine depicting the burrow complex of an Atlantic mud crab (Panopeus herbstii). He immediately recognized it as a crustacean burrow, for which I was glad, because it is an illustration of just that in my upcoming book, Life Traces of the Georgia Coast.

Burrow complex made by Atlantic mud crab (Panopeus herbstii), originally credited to a snapping shrimp (Alpheus heterochaelis). Scale = 5 cm (2 in). (Illustration by Anthony Martin, based on epoxy resin cast figured by Basan and Frey (1977).

After his campus visit, though, I realized that an even more appropriate artistic work to have shown him was the following one made for the Selections art exhibit last fall, titled Descent with Modification. This title in honor of the phrase used by Charles Darwin to describe the evolutionary process, but also is a play on words connecting to the evolution of burrowing crustaceans.

Descent with Modification again, but this time look at it as an evolutionary chart, where the burrow junctions in the burrow system reflect divergence points (nodes) from common ancestors. For example, from left to right, the ghost shrimp is more closely related to a mud shrimp, and both of these are more closely related to the ghost crab (middle) than they are to the lobster and freshwater crayfish (right). The main vertical burrow shaft represents their common ancestry from a “first decapod,” which may have been as far back as the Ordovician Period, about 450 million years ago.

The image shows five burrowing crustaceans, or to be more specific, ten-legged crustaceans called decapods. Along with these is a structure, which has a burrow entrance surrounded by a conical mound of excavated and pelleted sediment, a vertical shaft connecting to the main burrow network, and branching tunnels that lead to terminal chambers. A burrowing crustacean occupies each chamber, and these are, from left to right: a ghost shrimp (Callichirus major), a mud shrimp (Upogebia pusilla), a ghost crab (Ocypode quadrata), a marine lobster (Homarus gammarus), and a freshwater crayfish (Procambarus clarkii).

Here’s the cool part (or at least I think so): this burrow system also serves as an evolutionary chart – kind of a cladogram – depicting the ancestral relationships of these modern burrowing decapods. For example, lobsters and crayfish are more closely related to one another (share a more recent common ancestor) than lobsters are related to crabs. Mud shrimp are more closely related to crabs than ghost shrimp. Accordingly, the burrow junctions show where these decapod lineages diverged. So the title of the artwork is a double entendre with reference to Darwin’s phrase describing evolution as a process of “descent with modification,” along with burrowing decapods undergoing change through time as they descend in the sediment.

Modern decapod burrows and trace fossils of probable decapod burrows support both the science and the artwork, too. Here are a few examples to whet your ichnological and aesthetic appetites:

Thalassinoides, a trace fossil of horizontally oriented and branching burrow systems made by decapods in Early Cretaceous rocks (about 115 mya) of Victoria, Australia. In this case, these burrows were likely by freshwater decapods, such as crayfish, which had probably diverged from a common ancestor with marine lobsters more than 100 million years before then. Scale = 10 cm (4 in). (Photograph by Anthony Martin.)

Thalassinoides again, but this time in limestones formed originally in marine environments, from the Miocene of Argentina. Note the convergence in forms of the burrows with those of the freshwater crayfish ones in Australia. Think that might be related to some sort of evolutionary heritage? Scale = 15 cm (6 in). (Photograph by Anthony Martin.)

Horizontally oriented burrow junction of a modern ghost shrimp – probably made by a Carolina ghost shrimp (Callichirus major) – exposed along the shoreline of Sapelo Island, Georgia. Note the pelleted exterior, which is also visible on the burrow networks of the fossil ones in the Bahamas, pictured earlier. So if fossilized, this would be classified as the trace fossil Ophiomorpha nodosa. Scale in centimeters. (Photograph by Anthony Martin.)

Two ghost-shrimp burrow entrances on a beach of Sapelo Island, Georgia, with the one on the right showing evidence of its occupant expelling water from its burrow. No scale, but burrow mound on right is about 5 cm (2 in) wide. (Photograph by Anthony Martin.)

Burrow entrance and conical, pelleted mound made by a freshwater crayfish (probably a species of Procambarus) in the interior of Jekyll Island, Georgia. Scale = 1 cm (0.4 in). (Photograph by Anthony Martin.)

So the take-away message of all of these musings and visual depictions is that evolution, faith, science, art, trace fossils, modern burrows, and burrowing decapods can all co-exist and be celebrated, regardless of whether we sing Kumbaya or not. So let’s stop dividing one another, get out there, and learn.

*I’m also proud to say that my post from October 17, 2011, Georgia Life Traces as Art and Science, was nominated for possible inclusion in Open Laboratory 2013. Thank you!

Further Reading

Basan, P.B., and Frey, R.W. 1977. Actual-palaeontology and neoichnology of salt marshes near Sapelo Island, Georgia. In Crimes, T.P., and Harper, J.C. (editors), Trace Fossils 2. Liverpool, Seel House Press: 41-70.

Martin, A.J. In press. Life Traces of the Georgia Coast: Revealing the Unseen Lives of Plants and Animals. Indiana University Press, Bloomington, IN: 680 p.

Martin, A.J., Rich, T.H., Poore, G.C.B., Schultz, M.B., Austin, C.M., Kool, L., and Vickers-Rich, P. 2008. Fossil evidence from Australia for oldest known freshwater crayfish in Gondwana. Gondwana Research, 14: 287-296.

Martin, J.W. 2010. The Prism and the Rainbow: A Christian Explains Why Evolution is Not a Threat. Johns Hopkins University Press, Baltimore, MD: 192 p.

Martin, J.W., and Davis. G.E. 2001. An Updated Classification of the Recent Crustacea, No. 39, Science Series, Natural History Museum of Los Angeles County, Los Angeles, California: 132 p.


Out of One’s Depth in the Ediacaran

In my previous post, which followed a field trip to see a spectacular assemblage of 565-million-year-old Ediacaran body and trace fossils at Mistaken Point in Newfoundland, I made an awkward confession. This admission was that the stock phrase “the present is the key to the past,” used by geologists and paleontologists to describe actualism (also known as uniformitarianism) really depends on which past you’re talking about. As it turns out, when it comes to earth history, there are a lot of pasts.

Looking from afar onto the world standard for rocks recording the transition from life that lived superficially to life that, well, went a little deeper. (Photograph by Ruth Schowalter, taken at Fortune Head, Newfoundland (Canada).)

For instance, if you mean to apply that aphorism while referring to the last 12% of earth history, then for the most part you’ll be OK, although some of it will fall completely flat (more on that later).

But if you think it can be said blithely when referring to a time when all of the lifeforms looked like aliens from a bad Star Trek episode (TOS, of course), or when global oxygen levels were significantly lower than today, or the ozone layer protecting us from UV radiation was mostly absent, or deep-burrowing predators were completely unknown from every ecosystem, or the geochemistry of bottom sediments in the world oceans were radically different, then that’s not going to work so well for you. The world was vastly different at the Precambrian-Cambrian transition about 550 million years ago, and no amount of studying modern geological and biological processes or, say, modern traces of the Georgia barrier islands, is going to close that factual gap.

Underneath the intertidal sandflats of the Georgia barrier islands lurks the common moon snail (Neverita duplicata), detected through its burrow (left); and it radiates malevolence once exhumed from the burrow end (right, arrow). It is the top predator, the lion of the tidal flat, one might say, burrowing under sandflat surfaces to stalk its prey (other mollusks, including its own species), enveloping them with its muscular foot, and drilling into their shells to eat them alive. Simple, effective, and deadly. Was there anything like this moon snail in the Ediacaran Period, 635-542 million years ago? Nope. (Photographs by Anthony Martin, taken on Jekyll Island, Georgia.)

So let’s say you took a common moon snail from the Georgia coast and sent it back to the Ediacaran. You would think its evolutionarily advanced status, placed among such primitives, means that it would suddenly become the gastropod equivalent of a Terminator (the Summer Glau version, of course), wiping out every Ediacaran challenger in its mucus-lined path. Instead, it would die and quick and messy death from a combination of low oxygen levels, excessive biomats getting in its way, a lack of desirable prey, and excessive UV radiation. So you can stop building that gastropod-sized Tardis, and just face up to two realities: (1) the present is not always the key to the past; and (2) there is no such thing as time travel.

Oh yeah, back to the field trip. During the same excursion that included a stop at Mistaken Point, we also went to Fortune Head. Fortune Head is the place where the International Commission on Stratigraphy established the standard stratigraphic boundary for the switch from the Precambrian to the Cambrian. Called a Global Boundary Stratotype Section and Point (GSSP), or simply “stratotype,” this is a section of rock with the most nearly complete transition of rock units representing one time unit to the next.

A plaque at Fortune Head Ecological Reserve, informing visitors about the scientific importance of this site to geologists and paleontologists.

For example, the outcrop at Fortune Head is the stratotype for the transition from the Ediacaran Period (635-542 mya) to the Cambrian Period (542-488 mya). Sometimes geologists nickname this system of picking an exact boundary “the golden spike,” invoking images of a geologist hammering such a gaudy implement into the outcrop to imperiously announce its precise location. Lacking such geo-bling, though, we settled for one of the field trip leaders simply pointing with his walking stick to the boundary.

While we stayed safely on the hillside, the graduate students risked their lives to climb down onto the section and point at the Ediacaran-Cambrian boundary at Fortune Head, Newfoundland. For me, this brought back fond memories of Marlin Perkins, Jim Fowler, and Wild Kingdom. (Spoiler: the graduate students made it back OK.) (Photograph by Anthony Martin.)

So how would you know for yourself where, er, when you are – geologically speaking – in a section that has the youngest rocks of the Ediacaran Period and the oldest rocks of the Cambrian Period? That’s where the awesome power of ichnology comes into play, and it’s really simple to wield. If you look at the rocks and see the following trace fossil – Treptichnus pedum – you’re in the Cambrian Period. But if you don’t, you’re in the Ediacaran.

Whoa, check out that beautiful trace fossil! It’s Treptichnus pedum, a burrow made by a deposit-feeding animal, which was probably a worm-like animal, but also could have been an arthropod. Regardless of who made it, it’s a burrow reflecting a new behavior that evidently didn’t exist only a few million years before it was made. And that, boys and girls, makes this trace fossil a distinctive one. Scale in centimeters. (Photograph by Anthony Martin, taken at Grand Bank, Newfoundland.)

This trace fossil, a feeding burrow made by an invertebrate animal living in the seafloor 542 mya, is one of the few trace fossils used as an index fossil. Index fossils (also called guide fossils) tell you the age of the rocks you’re viewing. A good index fossil should have the following traits:

  • Abundant
  • Easily identifiable
  • Stratigraphically restricted
  • Geographically widespread

Treptichnus pedum indicates a behavior very different from every other trace fossil seen in Ediacaran rocks. It shows that the burrowing animal – probably a type of worm or arthropod – systematically probed into the sediment to ingest some of it, withdrew back into the main part of its burrow, then moved forward to probe again. Furthermore, over the course of making its burrow, its pathway may make loops, which increased the likelihood of it getting lots of goodies (organics) from the sediment. This behavior was totally different, and if it had been allowed to happen in the Ediacaran, no doubt would have led to laughter and ostracizing by other epifaunal and infaunal invertebrates. That is, if they could laugh or ostracize. (Hey, like I said, it was really different back then.)

But here’s the really strange dimension of the Ediacaran Period: as far as burrowers were concerned, it was mostly two-dimensional. Animal movement seemed restricted to horizontal planes, in which animals (worm-like or otherwise) squirmed, crawled, anchored and pulled, or whatever they did to get around, but stayed mainly in the plane.

Vertical movement, such as daring to burrow up or down in the sediment, was forbidden by either the rules of the marine ecosystems at that time, or by the bodies of the animals themselves. What kept animals from digging a little deeper? Part of the problem was that the seafloor was ruled by microbial mats, which covered sediment surfaces like plastic coverings on furniture at your grandma’s home.

This wrinkled surface on a Lower Cambrian sandstone just above the Ediacaran-Cambrian boundary at Fortune Head, Newfoundland is evidence of a probable microbial mat, or “biomat” These biomats were really common in the Ediacaran, became less common in the Cambrian, then after the Cambrian became more rare than a modest politician in an election year. Scale in centimeters. (Photograph by Anthony Martin.)

So if you were an animal then, you had no choice: you could adapt to being under these mats or on top of them. To make matters worse, all animal life apparently lacked the right hard parts, limbs, or other anatomical traits that could have pierced those mats or excavated the sediment underneath them. So no amount of rugged individualism in those invertebrates was going to change their horizontal movement to vertical.

A horizontal trail, probably made by an invertebrate animal, preserved on a 565-million-year-old bedding plane at Mistaken Point, Newfoundland. So you thought you could burrow vertically? Forget it, Jake – it’s Ediacaratown!

Of course, eventually the earth changed, the tyranny of the microbial mats was overcome by new evolutionary innovations in animals, and other adaptive paths took life into a third dimension. Consequently, the animals living on the seafloor started acting more like the ones we see today: not just living on or just underneath that seafloor, but also going down into it. This change was huge in an ecological sense, sometimes dubbed by paleontologists as the agronomic revolution, which accompanied the Cambrian explosion. This is not to say that revolutions must involve explosions, though. On the contrary, this was a quiet and slow sort of revolt, in which as earth environments changed, natural selection favored the burrowers, and the burrowers changed their environment. ¡Viva la revolución!

Here’s a little musical lesson about the increased biodiversity of the Cambrian Period. Professors, assign it to your students. Students, tell you professors about it, so they can look like they’re almost hip when they assign it. And for American viewers: the song has some sort of subversive subliminal message toward the end, praising some country other than the U.S. You’ve been warned.

In this respect, what was most meaningful about our visit to Fortune Head was seeing evidence of this ecological shift at the very same outcrop holding the stratotype for the Ediacaran-Cambrian boundary. Small, thin burrows preserved in the rocks from the earliest part of the Cambrian Period, spoke of this difference in the way life related to the seafloor. Vertically oriented they were, having gone into the sediment at a depth only the width of my fingernail. Nonetheless, it was a start, and an important one, heralding the evolution of ecosystems that more closely approach those of today.

See that little U-shaped burrow just below that thin sandstone? It only goes about a centimeter down, but that’s deeper than nearly any other burrow you would see in rocks from the Ediacaran Period. This sort of simple U-shaped burrow is given the ichnogenus name Arenicolites by ichnologists. Canadian-themed scale is in centimeters. (Photograph by Anthony Martin, taken at Fortune Head, Newfoundland.)

Same goes for this burrow, which is a spiral – cut on its side – and named Gyrolithes. Scale bar = 1 cm (0.4 in). (Photograph by Anthony Martin, taken at Fortune Head, Newfoundland.)

Life has moved further downward since, from worms to arthropods in marine environments, then later from millipedes to dinosaurs to gopher tortoises in continental environments, looking to places well below the surface that they could call home. So it was a awe-inspiring privilege to see a sample from the geologic record of when this first started, one centimeter at a time.

What was next stage for burrowing animals in the world’s oceans during the next 100 million years or so? To answer that question, we’ll jump ahead to the Ordovician Period, shuttling between rocks and trace fossils of that age in both Newfoundland and Georgia (USA, y’all). But while doing this, we’ll also look for glimpses of how these Ordovician trace fossils get just a little bit closer to the traces we being made in the modern sediments of the Georgia coast, and thus more like the actualism we all know and love.

Further Reading

Bottjer,D.J., Hagadorn, J.W., and Dornbos, S.Q. 2000. The Cambrian substrate revolution. GSA Today, 10(9): 1-7.

Canfield, D.E., and Farquhar, J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences, 106: 8123-8127.

Gingras, M., et al. 2011. Possible evolution of mobile animals in association with microbial mats. Nature Geoscience, 4: 372-375.

Seilacher, A. 1999.Biomat-related lifestyles in the Precambrian. Palaios, 14: 86-93.

Vickers-Rich, P., and Komarower, P. (editors). 2007 The Rise and Fall of the Ediacaran Biota. Geological Society of London, Special Publication 286: 448 p.

Shorebirds Helping Shorebirds, One Whelk at a Time

How might the traces of animal behavior influence and lead to changes in the behavior of other animals, or even help other animals? The sands and the muds of the Georgia barrier islands answer this, offering lessons in how seemingly inert tracks, trails, burrows, and other traces can sway decisions, impinging on individual lives and entire ecosystems, and encourage seemingly unlikely partnerships in those ecosystems. Along those lines, we will learn about how the traces made by laughing gulls (Larus altricilla) and knobbed whelks (Busycon carica) aided sanderlings (Calidris alba) in their search for food in the sandy beaches of Jekyll Island.

A roughly triangular depression in a beach sand on Jekyll Island, Georgia, blurred by hundreds of tracks and beak-probe marks of many small shorebirds, all of which were sanderlings (Calidris alba). What is the depression, how was it made, and how did it attract the attention of the sanderlings? Scale = size 8 ½ (men’s), which is about 15 cm (6 in) wide. (Photograph by Anthony Martin.)

Last week, we learned how knobbed whelks (Busycon carica), merely through their making trails and burrows in the sandy beaches of Jekyll Island, unwittingly led to the deaths of dwarf surf clams (Mulinia lateralis), the latter eaten by voracious sanderlings. Just to summarize, the dwarf surf clams preferentially burrowed around areas where whelks had disturbed the beach sand because the burrowing was easier. Yet instead of avoiding sanderling predation, the clustering of these clams around the whelks made it easier for these shorebirds to eat more of them in one sitting. Even better, this scenario, which was pieced together through tracks, burrows, and trails, was later verified by: catching whelks in the act of burying themselves; seeing clams burrow into the wakes of whelk trails; and watching sanderlings stop to mine these whelk-created motherlodes of molluscan goodness.

Before and after photos, showing how the burrowing of a knobbed whelk caused dwarf surf clams to burrow in the same small area (top), which in turn provided a feast for sanderlings (bottom); the latter is evident from the numerous tracks, peak-probe marks, and clam-shaped holes marking where these hapless bivalves formerly resided. (Both photographs by Anthony Martin, taken on Jekyll Island, Georgia.)

Was this the only trace-enhanced form of predation taking place on that beach? By no means, and it wasn’t even the only one involving whelks and their traces, as well as sanderlings getting a good meal from someone else’s traces. This is where a new character – the laughing gull (Larus altricilla) – and a cast of thousands represented by the small crustaceans – mostly amphipods – enter the picture. How these all come together through the life habits and traces these animals leave behind is yet another example of how the Georgia coast offers lessons in how the products of behavior are just as important as the behavior itself.

Considering that knobbed whelks are among the largest marine gastropods in the eastern U.S., it only makes sense that some larger animal would want to eat one whenever it washes up onto a beach. For example, seagulls, which don’t need much encouragement to eat anything, have knobbed whelks on their lengthy menus.

So when a gull flying over a beach sees a whelk doing a poor job of playing “hide-and-seek” during low tide, it will land, walk up to the whelk, and pull it out of its resting spot. From there, the gull will either consume the whelk on the spot, fly away with it to eat elsewhere (“take-out”), or reject it, leaving it high and dry next to its resting trace. An additional trace caused by gull predation might be formed when gulls carry the whelk through the air, drop them onto hard surfaces – such as a firmly packed beach sand – which effectively cracks open their shells and reveals their yummy interiors.

Paired gull tracks in front of a knobbed whelk resting trace, with the whelk tracemaker at the bottom of the photo. Based on size and form, these tracks were made by laughing gulls (Larus altricilla). The one on the left is likely the one that plucked the whelk from its resting trace, as its feet were perfectly positioned to pick up the narrow end of the whelk with its beak. The second gull might have seen what the first was doing and arrived on the scene soon afterwards, hoping to steal this potential meal for itself. For some reason, though, neither one ate it; instead, they discarded their object of desire there on the sandflat. For those of you who wondered if I then just walked away after taking the photo, I assure you that I threw the whelk back into water. At the same time, though, I acknowledged that the same sort of predation and rejection might happen again to that whelk with the next tidal cycle. Other shorebird tracks in the photo are from willets and sanderlings. (Photograph by Anthony Martin, taken on Jekyll Island.)

Sure enough, on the same Jekyll Island beach where we saw the whelk-surf clam-sanderling interactions mentioned last week, and on the same day, my wife Ruth Schowalter and I noticed impressions where whelks had incompletely buried themselves at low tide, only to be pried out by laughing gulls. Although we did not actually witness gulls doing performing, we knew it had happened because their paired tracks were in front of triangular depressions, followed by more tracks with an occasional discarded (but still live) whelk bearing the same dimensions as the impression.

My wife Ruth aptly demonstrates how to document seagull and whelk traces (foreground) while on bicycle, no easy feat for anyone, but a cinch for her.  Labels are: GT = gull tracks; WRT = whelk resting trace; KW = knobbed whelk; SU = spousal unit; and LCEFV = low-carbon-emission field vehicle. (Photograph by Anthony Martin, taken on Jekyll Island, Georgia.)

With this search image of a whelk resting trace in mind, we then figured out what had happened in a few places when we saw much more vaguely defined triangular impressions. These were also whelk resting traces, but they were nearly obliterated by sanderling tracks and beak marks; there was no sign of gulls having been there, nor any whelk bodies. Hence these must have been instances of where the gulls flew away with their successfully acquired whelks to drop them and eat them somewhere else. But why did the sanderlings follow the gulls with the shorebird equivalent of having a big party in a small place?

Yeah, I did it: so what? A laughing gull, looking utterly guiltless, stands casually on a Jekyll Island beach, unaware of how its going after knobbed whelks also might be helping its little sanderling cousins find amphipods. (Photograph by Anthony Martin.)

Although many people may not know this, when they walk hand-in-hand along a sandy Georgia beach, a shorebird smorgasbord lies under their feet in the form of small bivalves and crustaceans. The latter are mostly amphipods (“sand fleas”), which through sheer number of individuals can compose nearly 95% of the animals living in Georgia beach sands. Amphipods normally spend their time burrowing through beach sands and eating algae between sand grains or on their surfaces.

Close-up view of the amphipod Acanthohaustorius millsi, one of about six species of amphipods and billions of individuals living in the beach sands of the Georgia barrier islands, all of which are practically begging small shorebirds to eat them. Photo from here, borrowed from NOAA (National Oceanic and Atmospheric Administration – a very good use of U.S. taxpayer money, thank you very much) and linked to a site about Gray’s Reef National Marine Sanctuary, which is about 30 km (18 mi) east of Sapelo Island, Georgia.

Because amphipods are exceedingly abundant and just below the beach surface, they represent a rich source of protein for small shorebirds. But if you really want to make it easier for these shorebirds to get at this food, just kick your feet as you walk down the beach. This will expose these crustaceans to see the light of day, and the shorebirds will snap them up as these little arthropods desperately try to burrow back into the sand. This, I think, is also what happened with the gulls pulling whelks off the beach surface. Through the seemingly simple, one-on-one predator-prey act of a gull picking up a whelk, it exposed enough amphipods to attract sanderlings, which then set off a predator-prey interaction between the sanderlings and amphipods, all centered on the resting trace of the whelk.

Two whelks near one another resulted in two resting traces, and now both are missing, which likely means they were taken by laughing gulls. Notice how all of the sanderling trampling and beak marks have erased any evidence of the gulls having been there. (Photograph by Anthony Martin, taken on Jekyll Island.)

So as a paleontologist, I always ask myself, how would this look if I found something similar in the fossil record, and how would I interpret it? What I might see would be a dense accumulation of small, overlapping three-toed tracks – with only a few clearly defined – and an otherwise irregular surface riddled by shallow holes. The triangular depression marking the former position by a large snail, obscured by hundreds of tracks and beak marks, might stay unnoticed, or if seen, could be disregarded as an errant scour mark. The large gull tracks would be gone, overprinted by the many tracks and beak marks of the smaller birds.

Take a look again at the scene shown in the first photograph, and imagine it fossilized. Could you piece together the entire story of what happened, even with what you now know from the modern examples? I’m sure that I couldn’t. Scale bar = 15 cm (6 in). (Photograph by Anthony Martin.)

Hence the role of the instigator for this chain of events, the gull or its paleontological doppelganger, as well as its large prey item, would remain both unknown and unknowable. It’s a humbling thought, and exemplary of how geologist or paleontologist should stop to wonder how much they are missing when they recreate ancient worlds from what evidence is there.

Cast (reproduction) of a dense accumulation of small shorebird-like tracks from Late Triassic-Early Jurassic rocks (about 210 million years old) of Patagonia, Argentina. These tracks are probably not from birds, but from small bird-like dinosaurs, and they were formed along a lake shoreline, rather than a seashore. Nonetheless, the tracemaker behaviors may have been similar to those of modern shorebirds. Why were these animals there, and what were they eating? Can we ever know for sure about what other animals preceded them on this small patch of land, what these predecessors eating, and how their traces might have influenced the behavior of the trackmakers? (Photograph by Anthony Martin; cast on display at Museo de Paleontológica, Trelew, Argentina.)

Another parting lesson that came out of these bits of ichnological musings is that all of the observations and ideas in this week’s and last week’s posts blossomed from one morning’s bicycle ride on a Georgia-coast beach. Even more noteworthy, these interpretations of natural history were made on an island that some scientists might write off as “too developed” to study, its biota and their ecological relationships somehow sullied or tainted by a constantly abundant and nearby human presence. So whenever you are on a Georgia barrier island, just take a look at the life traces around you, whether you are the only person on that island or one of thousands, and prepare to be awed.

Further Reading

Croker, R.A. 1968. Distribution and abundance of some intertidal sand beach amphipods accompanying the passage of two hurricanes. Chesapeake Science, 9: 157-162.

Elbroch, M., and Marks, E. 2001. Bird Tracks and Sign of North America. Stackpole Books. Mechanicsburg, Pennsylvania: 456 p.

Grant, J. 1981. A bioenergetic model of shorebird predation on infaunal amphipods. Oikos, 37: 53-62.

Melchor, R. N., S. de Valais, and J. F. Genise. 2002. The oldest bird-like fossil footprints. Nature, 417:936938.

Wilson, J. 2011. Common Birds of Coastal Georgia. University of Georgia Press, Athens, Georgia: 219 p.

Knobbed Whelks, Dwarf Clams, and Shorebirds: A Love Story, Told Through Traces

For the last three Thanksgivings, my wife Ruth and I have fled the metropolitan Atlanta area and sought “nature therapy” through the environments of Jekyll Island on the Georgia coast. For this all-too-short vacation, we take our bicycles with us, stay in a hotel near the beach, and ride for hours on Jekyll’s plentiful bike paths or long beaches, taking in the fresh sea air and stopping to look at and document any animal traces that catch our interest. It is ichnology with a low carbon footprint, natural history that’s also eco-chic. Best of all, though, we have been to Jekyll enough times to know where the best traces are likely to be found. Because of this inside knowledge and enthusiasm for all things ichnological, we sometimes discover phenomena, that, as far as we know, were previously unnoticed on any of the undeveloped Georgia barrier islands.

This Thanksgiving break was one of those times. The cast of characters in our latest novel find includes: two molluscans, knobbed whelks (Busycon carica) and dwarf surf clams (Mulinia lateralis); and two species of shorebirds, sanderlings (Calidris alba) and laughing gulls (Larus altricilla). How these four animals and their traces related to one another made for a fascinating story, nearly all of it discerned through their traces left on that Jekyll Island beach.

A view of a sandy beach on Jekyll Island at low tide with clusters of shallowly buried dwarf surf clams (Mulinia lateralis). These bivalves and their burrows, combined with beak marks and tracks of one of their predators, sanderlings (Calidris alba), make for the dark patches on the sand. But do you also see the abundant knobbed whelks (Busycon carica) and their traces in this photo? If not, please read on. (Ruth Schowalter for scale, happily standing by her bicycle, and photograph by Anthony Martin.)

Jekyll is a developed island on the Georgia coast, its southern end about 30 kilometers (18 miles) north of the Georgia-Florida border, with sandy beaches, dunes, salt marshes, and maritime forests, all interrupted by residences, roads, golf courses, boutique shops, and other human-centered amenities. On the southeastern end of Jekyll, however, the beachside condominiums and hotels become fewer and the sandy natural areas correspondingly expand, holding bountiful traces of the local wildlife. With this geography in mind, we headed south on our bikes along the beach our first full day there. During this exhilarating outing, Ruth and I paused occasionally to figure out what animal activities might have taken place in the minutes or hours before our arrival, just after the high tide had turned and exposed broader areas of sandy beach.

We were not disappointed, as some traces immediately caught our attention. Low in the intertidal zone, we noticed upraised flaps of sand that marked the subsurface positions of variably sized knobbed whelks, which are among the largest marine snails in the eastern U.S. These whelks, brought in by the high tide and strong waves, had burrowed down into the sand as soon as the tide subsided. This behavioral mode has been positively reinforced by millions of years by natural selection, a tactic by the whelk that avoids both desiccation and predation.

Here’s how to spot a buried whelk. Look for a triangular interruption in an otherwise smooth surface, where a flap of sand is slightly raised. Sometimes this trace also has a small hole at one end of the triangle. Test your hypothesis by digging in gently with your fingers. If you’re wrong, then revise your search image for their traces until you get it right. The knobbed whelk pictured here is a small one, but check out the size of the one in the next picture. (Both photographs by Anthony Martin, taken on Jekyll Island.)

A whelk uses its muscular foot to bury itself, expanding and contracting it so that the foot probes into the still-saturated sand left by the high tide; once the foot anchors in the sand, it pulls the rest of the whelk sideways and down. This really isn’t so much “burrowing” as an intrusion, where the animal insinuates itself into the sand. Contrast this method with the active digging we normally associate with burrows made by most terrestrial animals with legs.

A robust specimen of a knobbed whelk (held by Ruth), showing off its well-developed foot, which it uses to bury itself. (Photograph by Anthony Martin, taken on Jekyll Island.)

A knobbed whelk caught in the act of burying itself, leaving a short trail behind and a mound of sand in front as it starts to get underneath the beach surface. (Photograph by Anthony Martin, taken on Jekyll Island.)

Once a whelk is buried, waves may wash over its trail, erasing all evidence of its preceding actions. Nonetheless, once emergent, seawater drains downward through the sand and tightens these grains around the whelk, denoting it as a triangular “trap door” that occasionally has a small hole at one end. This hole marks where the whelk expelled water through the bottom end of its shell.

Near these clear examples of whelk traces on this beach were clusters of dwarf surf clams. Similar to whelks, these clams were washed up by the hide tide and waves, and they instinctually burrowed once exposed on the surface. Although much smaller and more streamlined than knobbed whelks, they likewise use a muscular foot to intrude the sand, anchor, and pull in their shelled bodies. Under the right conditions, these clams will also leave a trail behind them before descending under the sand, although such traces are easily wiped clean by a single wave.

Cluster of dwarf surf clams that burrowed into the sand at low tide, some noticeable through little “sand caps” on top of them. Say, I wonder why there’s a triangular-shaped bare spot of sand toward one end of that cluster? (Swiss Army knife = 6 cm (2.4 in) long; photograph by Anthony Martin, taken on Jekyll Island.)

Although dwarf surf clams ideally orient themselves vertically and push two siphons through the sand – making a Y-shaped burrow – they sometimes only have enough strength to bury themselves on their sides, hidden by a mere cap of sand. This bivalve equivalent of hiding under a blanket makes them much more vulnerable to predation, especially from shorebirds that find these clams and make quick snacks of them, such as sanderlings.

Sanderling (Calidris alba), 50-100 g of pure avian fury, prowling the sandy tidal flat of Jekyll Island in search of prey. Moon snails, given their fierce predation on other molluscans, may be the “lions of the tidal flat,”  but as far as small crustaceans and clams are concerned, sanderlings are the “tyrannosaurs.” (Photograph by Anthony Martin, taken on Jekyll Island.)

Sanderlings eat many small crustaceans that live in the sand, but they are also fond of small bivalves, such as dwarf surf clams. Sure enough, wherever you find a cluster of these clams, you will also find abundant tracks and beak probe marks made by these birds. Both their tracks and the probe patterns made by their beaks are diagnostic of this species: when I see these traces on any Georgia beach, I don’t have to look at a bird-identification guide to know whether sanderlings, dunlins, plovers, or sandpipers were there. Their food choices are clarified even more when you see their tracks and beak-probe marks directly associated with almond-shaped holes, where they neatly extracted the clams from their burrows.
Sanderling tracks and beak-probe marks, with holes where clams were located by the sanderlings and  plucked out of their shallow burrows. (Swiss Army knife = 6 cm (2.4 in) long; photograph by Anthony Martin, taken on Jekyll Island.)

So how do these three species and their traces all relate to one another? (And what about the laughing gull?) Well, this is where it got even more interesting. Ruth and I soon started spotting triangular outlines within the clam clusters, bare spots on the sand devoid of both clams and beak marks. Underneath these were whelks. As we stood back and looked down the beach, we then saw how these clumps of clams were throughout the intertidal zone, and each was surrounding a whelk. Somehow the whelks had served as nucleation sites for clams, which had chosen to burrow in the sand around the whelks, instead of being randomly dispersed throughout the beach.

Remember this previous photo? There’s a whelk buried underneath that bare triangular patch.

Didn’t believe me? Well, there it is. It’s almost as if ichnology is a science, in which hypotheses, once confirmed by evidence-based reasoning, have predictive power.

Here are two more clusters of dwarf surf clams around buried whelks, hidden but still identifiable.

Quiz time: how many whelks are here? Thanks to ichnology, you don’t actually have to see them to dig them out for a census. (All four photographs by Anthony Martin and taken on Jekyll Island.)

Why were the clams burrowing around the whelks? Was this some sort of commensalism, in which the clams found more food around the whelks? No, because these clams are filter feeders, taking in water with suspended organic material for their sustenance, instead of ingesting the sand around them. How about protection? That didn’t seem likely either, because the whelk had no interest in defending the clams, and its body wasn’t even serving as a shield against shorebirds.

So I thought about how these clams burrow, and then it all made sense. Because dwarf surf clams are so small, sand grains are more like cobbles would be to you and me. Moving through these sediments thus takes considerable effort, especially as water drains from the sand and surface tension holds together the grains more tightly. This means the clams have to take advantage of sand that acts more like quicksand and less like concrete, and burrow when the sand has lots of water between the grains.

This is where the whelk became both the unwitting friend and enemy of the dwarf surf clams. As it burrowed, it fluidized the sand around it, shaking up the grains so that more space opened between them, which allowed in more water. This zone of disturbance and liquified sand was eagerly exploited by nearby clams, which easily burrowed into both the whelks’ trails and the immediate areas around their bodies.

Alas, this opportunity for safety provided by the whelk ultimately led to the sanderlings chowing down on the clams. What might have been a meticulous search for small clams sprinkled hither and tither throughout the broad Jekyll beach had now became a lot easier, thanks to both the whelks and the clams. All a sanderling had to do was find each motherlode of clams conveniently grouped around a buried whelk and start probing. It was an all-you-can-eat clam feast, and the traces clearly showed where some of these birds stopped and took their time gorging on the clams. Their tracks also showed where one stopped sanderling attracted the attention of others, which then rushed to the scene and joined in the buffet.

Wait, what have we here? A sanderling alters its course to investigate an obvious dense accumulation of dwarf surf clams. How did this population get so dense? Blame the knobbed whelk, which was just minding its own business by burrowing.

The carnage of sanderling plundering, in which about a third of buried dwarf surf clams were pulled from their burrows and the sand was trampled by thundering avian feet. This gruesome scene can all be laid at the feet, er, foot of the the whelk pictured here, which through its burrowing made it easier for the clams to burrow around it. (Both photographs by Anthony Martin and taken on Jekyll Island.)

But what about the laughing gull and its role in this story? Sorry, that will have to wait until next week’s post. In the meantime, in these days immediately following the Thanksgiving holiday in the U.S., let us all be thankful for the natural areas still preserved on Jekyll Island that allow for such wanderings of our bodies and minds, as well as the little personal discoveries of its life traces, infused with wonder, that can be shared with others.

Further Reading

Elbroch, M., and Marks, E. 2001. Bird Tracks and Sign of North America. Stackpole Books. Mechanicsburg, Pennsylvania: 456 p.

Howard, J.D., and Dörjes, J., 1972. Animal-sediment relationships in two beach-related tidal flats: Sapelo Island, Georgia. Journal of Sedimentary Research, 42: 608-623.

MacLachlan, A., and Brown, A.C. 2006. The Ecology of Sandy Shorelines. Academic Press, New York: 373 p.

Powers, S.G., and Kittinger, J.N. 2002. Hydrodynamic mediation of predator–prey interactions: differential patterns of prey susceptibility and predator success explained by variation in water flow. Journal of Experimental Marine Biology and Ecology, 273: 171-187.

Wilson, J. 2011. Common Birds of Coastal Georgia. University of Georgia Press, Athens, Georgia: 219 p.