A Mirror Less Distant in Time

(This post is the third in a series about my recent field experiences in Newfoundland, Canada in association with the International Congress on Ichnology meeting (Ichnia 2012) in August, 2012. The first dealt with the unusualness of the Ediacaran Period and the second was about the transition from the Ediacaran to the Cambrian Period for burrowing animals.)

The Ordovician Period, a time represented by rocks from 488-443 million years ago, is an old (and I mean, really old) friend of mine. In my master’s thesis, I studied Ordovician fossils from southwestern Ohio, and for my Ph.D. dissertation, I described and interpreted Ordovician trace fossils and strata in Georgia and Tennessee. Thus for the formative years of my academic career, the Ordovician had a strong presence in my life, overshadowing most other geologically inspired opportunities in my adopted home state of Georgia.

Nice outcrop, eh? It’s composed of Lower Ordovician sedimentary rocks, formed more than 450 million years ago, and is on Bell Island, just offshore from St. Johns, Newfoundland (Canada). It’s a place I had never visited before last month, but its trace fossils took me back to Georgia. How? Guess you’ll have to read some more to find out. (Photograph by Anthony Martin.)

This Ordovician-dominated worldview contrasted with a much later focus on the present-day Georgia barrier islands. Between when I first arrived in Georgia, in 1985 through 1998, my only foray to its coast was a three-day field trip as a graduate student to Sapelo Island in 1988. Fortunately, I’ve been a more regular visitor to Sapelo and other Georgia barrier islands throughout the past 14 years or so, and my geologic perspective has accordingly traveled more than 400 million years forward to study modern plant and animal traces.

However, as I’ve embraced the present and the lessons it offers, what also happened over those years was a personal distancing from the Ordovician. This separation was unfortunate for several reasons. One is that Ordovician body and trace fossils are a mere 1.5-2 hour drive from where I live in the metropolitan Atlanta area, just south of Chattanooga, Tennessee. In contrast, the Georgia coast takes a minimum of four hours to reach by car.

Granted, northwest Georgia was part of my dissertation field area, so my leaving behind a place already prospected, poked, prodded, and otherwise inspected thoroughly more than 20 years ago is understandable and forgivable. Yet a day trip there with a colleague last spring (March 2011), along with a recent field trip to view Ordovician rocks in Newfoundland, Canada last month, reminded me of what was in my geological backyard, while also provoking new thoughts about the intersections between the Ordovician and the Georgia coast.

So what happened during those 20+ years of not studying the Ordovician rocks close to me in Georgia? Well, I gained lots more experience, went to many places with rocks and trace fossils of varying ages, and thus – I like to think – became a better ichnologist. So that leads to an imperiously pronounced statement, so please read it, take it in, and revel in its truth: Ichnology is a skill-based science.

People who study the earth sciences have an old saying, often stated during field trips to students: “The best geologist is the one who’s seen the most rocks.” The same sentiment might be applied to ichnologists. To excel as an ichnologist, it’s not your publication record (let alone impact factors of journals publishing your work), the number or size of your grants, accolades of your peers, “big-idea” review papers, erudite tomes, or any number of trappings imposed by academia that matter. What really matters in becoming a better ichnologist is how many traces you’ve seen, measured, sketched, journaled, photographed, pondered, argued over, and folded into your consciousness.

Hey, look – it’s ichnologists, trying to learn more by studying trace fossils in the field! (Photograph by Ruth Schowalter, taken on Bell Island, Newfoundland, Canada.)

Sure, peer review from your colleagues is still an important part of this learning process. Otherwise, as a tracking instructor once told me and other nascent trackers, “When you always track by yourself, you’re always right.” You don’t want to be that ichnologist who gets things wrong, then insists every other ichnologist is wrong, while also imagining that they’re teeming with jealousy over your brilliance. You know, the “they laughed at Galileo, too” fallacy.

Behold my genius! Only I can clearly see these are the tracks of an eight-legged river otter. Oh, so you think they’re from two four-legged otters, with one following the other? Dolt! Don’t you know who I am?

So am I the best ichnologist? Not just no, but hell no. The acknowledged master of ichnology is Dolf Seilacher. And the main reason I enthusiastically bestow Dr. Seilacher with a crown of back-filled and spreiten-laden burrows is because of the extraordinary amount of experience he has as an ichnologist. Granted, he’s also done all of that academic-type stuff that persuades far less-accomplished members of tenure-review committees to nod their heads with utmost seriousness and say, “Well, I suppose we can make an exception in this case.” But he also has seen, measured, sketched, journaled, photographed, pondered, argued over many, many trace fossils during his 87 years on this planet. Dolf knows traces.

Dolf Seilacher, the widely hailed master of ichnology in the world. Even when he’s wrong, he’s really good at it. (Photograph by Anthony Martin, taken in Krakow, Poland.)

So let’s go back to the Ordovician, and how it relates to Dolf and my claim about the importance of experience in ichnology. In 1997, I invited Dolf to visit Emory University as a distinguished speaker in an evolutionary biology lecture series we had then (since gone defunct, like many things at Emory). Because he had never before visited Georgia, he insisted that we also arrange a field trip for him to see some trace fossils here. So with my friend and colleague, Andy Rindsberg, we organized a day trip to an outcrop near Ringgold, Georgia to look at the Ordovician trace fossils there. Andy had done his master’s thesis on the Ordovician and Silurian trace fossils in that area, and as mentioned earlier, I had done my Ph.D. dissertation about the Ordovician rocks, in which I interpreted them mostly through an ichnological lens.

Dolf Seilacher in Georgia (USA) for the first time in November 1997, coffee in one hand and a trilobite burrow in the other. See all of those Ordovician rocks in the background? Even though he’d never been there before, he noticed trace fossils in them in less time than most of us take to read a Huffington Post headline. Gee, you think it had anything to do with his experience? (Photograph by Anthony Martin, taken near Ringgold, Georgia. And just so you know, no paleontologists were “Dolfed” in this photo.)

Andy and I knew the rocks and their trace fossils at this outcrop better than anyone in the world. Yet within five minutes of arriving at the outcrop, Dolf laid his hand on a large slab of Ordovician rock and began talking matter-of-factly about the trilobite burrows in it. Andy and I looked at each other, and said (almost simultaneously), “Trilobite burrows?”

Dolf was right. This rock and many others there were filled with circular, back-filled burrows, which were made by small trilobites that burrowed into mudflats more than 400 million years ago. During a futile attempt to disprove him the following year, Andy and I  found these burrows connected to trackways, and one even ended in a resting trace, perfectly outlining the body of a small trilobite. (Did I mention Dolf was right?)

Burrow (upper right, circular structure) connected to tracks made by little legs from a little trilobite. Trace fossils are on the bottom of a sandstone from the Upper Ordovician Sequatchie Formation of northwest Georgia. Scale in centimeters. (Photograph by Anthony Martin.)

Later on that same day, we looked more carefully at some other fossil burrows at the outcrop. These broad, banana-shaped trace fossils were ones that Andy and I had noted in our respective studies, called Trichophycus. Dolf continued his trilobite–tracemaker theme, insisting that these were also trilobite burrows. This idea was supported by scratchmarks on the burrow walls, which linked the burrows to the small legs of whichever arthropod lived in the burrows. Again, trilobites made sense as the tracemakers, and we haven’t yet found a reason why this would be wrong.

Trusted field assistant Paleontologist Barbie, pointing to a cluster of Trichophycus (interpreted as trilobite burrows) in the Sequatchie Formation of northwest Georgia. She is pointing to some scratchmarks on the burrow walls, which are preserved in natural casts of the burrows. (Photograph by Anthony Martin.)

Almost 13 years later, in March 2011, Andy and I went back to this same Ringgold outcrop to re-study the trace fossils there, done in preparation for a presentation he gave the next month at a regional Geological Society of America meeting (abstract here). He and I were surprised at how much the outcrop had changed since we last visited. Vegetation, particularly of the thorny variety, covered the ground and impeded our progress. Nonetheless, we found many excellent examples of trilobite burrows (Trichophycus), a beautiful trilobite resting trace (Rusophycus), and, for the first time for either of us, a sea-star resting trace.

Resting trace of a trilobite (Rusophycus), with a small part of its trackway leading to the trace, in the Upper Ordovician Sequatchie Formation of northwest Georgia. These trace fossils are preserved as natural casts on the bottom of a sandstone, so you’re seeing the underside of where the trilobite hunkered down more than 400 million years ago. (Photograph by Anthony Martin.)

Resting trace of a sea star (Asteriacites) in the Upper Ordovician Sequatchie Formation of northwest Georgia. This trace fossil, like that of the trilobite resting trace, is also preserved as natural casts on the bottom of a sandstone, so you’re looking underneath where the sea star moved into the mud. (Photograph by Anthony Martin.)

Our discovery of the latter two trace fossils – the trilobite and sea-star resting traces – took me from the Ordovician to the Georgia coast and back again. Throughout the late 1980s, I recall my Ph.D. advisor, Robert (“Bob”) Frey placing many of his articles in my graduate-student mailbox, all of which dealt with the traces of the modern Georgia coast. That’s odd, I thought. What did the traces of the modern Georgia coast have to do with these 440-million-year-old rocks?

In my limited worldview at the time, I did not see that the Georgia barrier islands and their traces composed a mirror, however removed by time, for looking into that Ordovician past. But eventually, given enough articles read, field work done, and trace fossils examined at these Ordovician outcrops, I slowly realized these 440-million-year-old rocks had been formed in estuaries, similar to those along the Georgia coast. When I first published an article about these rocks and their trace fossils in 1993 (link here), these strata represented the oldest known estuary deposits in the world, and some of the trace fossils could be readily compared to those on the Georgia coast. The beauty of this realization was that Frey, a master ichnologist in his own right and a contemporary of Seilacher, had allowed me to discover it for myself: he just provided the clues.

Remember that small, circular trilobite burrow with tracks connecting to it? Now compare it to the same sort of traces made by a modern beach mole crab (Albunea paretii), which left its burrow on the right, walked to the left, and is here rapidly burying itself in the sand. Scale in centimeters. (Photograph by Anthony Martin, taken on Sapelo Island, Georgia.)

Resting trace and attached trackway of a juvenile horseshoe crab (or limulid, specifically Limulus polyphemus). So think about a similarly sized trilobite making this, and what the bottom of the trace would like like, then compare it to the Ordovician trilobite resting trace fossil shown earlier. Scale in centimeters. (Photograph by Anthony Martin, taken on Sapelo Island, Georgia.)

Resting trace of a lined sea star (Luidia clathrata), with the original tracemaker just below its trace. This sea star was stuck above the high tide mark, burrowed into the underlying moist sand, but then tried to move to a better place once its spot started to dry out. Now compare this resting trace to the Ordovician trace fossil shown before. No scale, but sea star is about 8-10 cm wide. (Photograph by Anthony Martin, taken on Sapelo Island, Georgia.)

The following year and only a month ago (August 2012), Andy and I had another Ordovician learning opportunity presented to us, but this time in Newfoundland, Canada. A day trip to see Ordovician rocks and trace fossils on Bell Island, just a 30-minute ferry ride from St. Johns, Newfoundland, was a welcome break from the butt-numbing sessions of the previous two days of the Ichnia 2012 conference at Memorial University.

In our first few minutes at the outcrop and its numerous boulders – spoil piles from an iron-ore mine – we realized that one of the dislodged slabs in front of me was loaded with specimens of Trichophycus. It was a pleasant surprise to get reacquainted with this trace fossil, and in a place far away both geographically and experientially from Georgia.

Multiple specimens of Trichophycus in Lower Ordovician rocks of Newfoundland, Canada, preserved as natural casts of the burrows. See all of those scratchmarks on the burrow walls? These were also made by trilobites, but probably different ones from those in Georgia. Scale in centimeters (and that ain’t no real maple leaf.) (Photograph by Anthony Martin.)

Multiple specimens of Trichophycus in the Upper Ordovician Sequatchie Formation of Georgia, USA, also preserved as natural casts of the burrows and showing some scratchmarks on the walls. Do they look familiar to you, too? If so, welcome to the Ordovician. (Photograph by Anthony Martin.)

Here’s that trilobite resting trace (Rusophycus) from Georgia that I showed earlier. Now take a gander at the one below…

Why, that seems to be a trilobite resting trace (Rusophycus), too, but in Lower Ordovician rocks of Newfoundland. Surprise, surprise, surprise! Scale in centimeters. (Photograph by Anthony Martin.)

Suddenly, much of Andy’s and my previous experience with the Ordovician rocks of Georgia came back to us. We were, paradoxically, home, only in this instance, “home” was a time, not a place. Ichnological colleagues who had no idea Andy and I had worked with Ordovician trace fossils stared at us quizzically (and skeptically) as we excitedly discussed the burrows. But once we informed them that we had seen these trace fossils before, our experience was recognized, egos were set aside, and learning was enhanced. Funny how that works sometimes.

So with our trip to Newfoundland, we went from the alien world of the Ediacaran Period, with its trace fossils unlike anything I had seen before, to the more familiar and accommodating Ordovician Period rocks and their trace fossils. What I learned from this trip, combined with many others to Ordovician rocks elsewhere, as well as the modern sediments of the Georgia coast, was that the mirror was not so foggy after all, and that more field experiences can only further clarify these connections between life traces from the present and the not-so-distant past.

Further Reading

Buatois, L.A., Gingras, M.K., MacEachern, J., Mángano, M.G., Zonneveld, J.-P, Pemberton, S.G., Netto, R.G., and Martin, A.J. 2005. Colonization of brackish-water systems through time: Evidence from the trace-fossil record. Palaios, 20: 321-347.

Eldredge, N., 1970. Observations on burrowing behavior in Limulus polyphemus (Chelicerata, Merostomata), with implications on the functional anatomy of trilobites. American Museum Novitates, 2436: 17 p.

Fillion, D. and Pickerill, R.K. 1990. Ichnology of the Lower Ordovician Bell Island and Wabana Groups of eastern Newfoundland. Palaeontographica Canadiana, 7: 1-119.

Martin, A.J. 1993. Semiquantitative and statistical analysis of bioturbate textures, sequatchie formation (upper ordovician), Georgia and Tennessee, USA. Ichnos, 2: 117-136.

Seilacher, A. 2007. Trace Fossil Analysis. Springer, Berlin: 240 p.

Out of One’s Depth in the Ediacaran

In my previous post, which followed a field trip to see a spectacular assemblage of 565-million-year-old Ediacaran body and trace fossils at Mistaken Point in Newfoundland, I made an awkward confession. This admission was that the stock phrase “the present is the key to the past,” used by geologists and paleontologists to describe actualism (also known as uniformitarianism) really depends on which past you’re talking about. As it turns out, when it comes to earth history, there are a lot of pasts.

Looking from afar onto the world standard for rocks recording the transition from life that lived superficially to life that, well, went a little deeper. (Photograph by Ruth Schowalter, taken at Fortune Head, Newfoundland (Canada).)

For instance, if you mean to apply that aphorism while referring to the last 12% of earth history, then for the most part you’ll be OK, although some of it will fall completely flat (more on that later).

But if you think it can be said blithely when referring to a time when all of the lifeforms looked like aliens from a bad Star Trek episode (TOS, of course), or when global oxygen levels were significantly lower than today, or the ozone layer protecting us from UV radiation was mostly absent, or deep-burrowing predators were completely unknown from every ecosystem, or the geochemistry of bottom sediments in the world oceans were radically different, then that’s not going to work so well for you. The world was vastly different at the Precambrian-Cambrian transition about 550 million years ago, and no amount of studying modern geological and biological processes or, say, modern traces of the Georgia barrier islands, is going to close that factual gap.

Underneath the intertidal sandflats of the Georgia barrier islands lurks the common moon snail (Neverita duplicata), detected through its burrow (left); and it radiates malevolence once exhumed from the burrow end (right, arrow). It is the top predator, the lion of the tidal flat, one might say, burrowing under sandflat surfaces to stalk its prey (other mollusks, including its own species), enveloping them with its muscular foot, and drilling into their shells to eat them alive. Simple, effective, and deadly. Was there anything like this moon snail in the Ediacaran Period, 635-542 million years ago? Nope. (Photographs by Anthony Martin, taken on Jekyll Island, Georgia.)

So let’s say you took a common moon snail from the Georgia coast and sent it back to the Ediacaran. You would think its evolutionarily advanced status, placed among such primitives, means that it would suddenly become the gastropod equivalent of a Terminator (the Summer Glau version, of course), wiping out every Ediacaran challenger in its mucus-lined path. Instead, it would die and quick and messy death from a combination of low oxygen levels, excessive biomats getting in its way, a lack of desirable prey, and excessive UV radiation. So you can stop building that gastropod-sized Tardis, and just face up to two realities: (1) the present is not always the key to the past; and (2) there is no such thing as time travel.

Oh yeah, back to the field trip. During the same excursion that included a stop at Mistaken Point, we also went to Fortune Head. Fortune Head is the place where the International Commission on Stratigraphy established the standard stratigraphic boundary for the switch from the Precambrian to the Cambrian. Called a Global Boundary Stratotype Section and Point (GSSP), or simply “stratotype,” this is a section of rock with the most nearly complete transition of rock units representing one time unit to the next.

A plaque at Fortune Head Ecological Reserve, informing visitors about the scientific importance of this site to geologists and paleontologists.

For example, the outcrop at Fortune Head is the stratotype for the transition from the Ediacaran Period (635-542 mya) to the Cambrian Period (542-488 mya). Sometimes geologists nickname this system of picking an exact boundary “the golden spike,” invoking images of a geologist hammering such a gaudy implement into the outcrop to imperiously announce its precise location. Lacking such geo-bling, though, we settled for one of the field trip leaders simply pointing with his walking stick to the boundary.

While we stayed safely on the hillside, the graduate students risked their lives to climb down onto the section and point at the Ediacaran-Cambrian boundary at Fortune Head, Newfoundland. For me, this brought back fond memories of Marlin Perkins, Jim Fowler, and Wild Kingdom. (Spoiler: the graduate students made it back OK.) (Photograph by Anthony Martin.)

So how would you know for yourself where, er, when you are – geologically speaking – in a section that has the youngest rocks of the Ediacaran Period and the oldest rocks of the Cambrian Period? That’s where the awesome power of ichnology comes into play, and it’s really simple to wield. If you look at the rocks and see the following trace fossil – Treptichnus pedum – you’re in the Cambrian Period. But if you don’t, you’re in the Ediacaran.

Whoa, check out that beautiful trace fossil! It’s Treptichnus pedum, a burrow made by a deposit-feeding animal, which was probably a worm-like animal, but also could have been an arthropod. Regardless of who made it, it’s a burrow reflecting a new behavior that evidently didn’t exist only a few million years before it was made. And that, boys and girls, makes this trace fossil a distinctive one. Scale in centimeters. (Photograph by Anthony Martin, taken at Grand Bank, Newfoundland.)

This trace fossil, a feeding burrow made by an invertebrate animal living in the seafloor 542 mya, is one of the few trace fossils used as an index fossil. Index fossils (also called guide fossils) tell you the age of the rocks you’re viewing. A good index fossil should have the following traits:

  • Abundant
  • Easily identifiable
  • Stratigraphically restricted
  • Geographically widespread

Treptichnus pedum indicates a behavior very different from every other trace fossil seen in Ediacaran rocks. It shows that the burrowing animal – probably a type of worm or arthropod – systematically probed into the sediment to ingest some of it, withdrew back into the main part of its burrow, then moved forward to probe again. Furthermore, over the course of making its burrow, its pathway may make loops, which increased the likelihood of it getting lots of goodies (organics) from the sediment. This behavior was totally different, and if it had been allowed to happen in the Ediacaran, no doubt would have led to laughter and ostracizing by other epifaunal and infaunal invertebrates. That is, if they could laugh or ostracize. (Hey, like I said, it was really different back then.)

But here’s the really strange dimension of the Ediacaran Period: as far as burrowers were concerned, it was mostly two-dimensional. Animal movement seemed restricted to horizontal planes, in which animals (worm-like or otherwise) squirmed, crawled, anchored and pulled, or whatever they did to get around, but stayed mainly in the plane.

Vertical movement, such as daring to burrow up or down in the sediment, was forbidden by either the rules of the marine ecosystems at that time, or by the bodies of the animals themselves. What kept animals from digging a little deeper? Part of the problem was that the seafloor was ruled by microbial mats, which covered sediment surfaces like plastic coverings on furniture at your grandma’s home.

This wrinkled surface on a Lower Cambrian sandstone just above the Ediacaran-Cambrian boundary at Fortune Head, Newfoundland is evidence of a probable microbial mat, or “biomat” These biomats were really common in the Ediacaran, became less common in the Cambrian, then after the Cambrian became more rare than a modest politician in an election year. Scale in centimeters. (Photograph by Anthony Martin.)

So if you were an animal then, you had no choice: you could adapt to being under these mats or on top of them. To make matters worse, all animal life apparently lacked the right hard parts, limbs, or other anatomical traits that could have pierced those mats or excavated the sediment underneath them. So no amount of rugged individualism in those invertebrates was going to change their horizontal movement to vertical.

A horizontal trail, probably made by an invertebrate animal, preserved on a 565-million-year-old bedding plane at Mistaken Point, Newfoundland. So you thought you could burrow vertically? Forget it, Jake – it’s Ediacaratown!

Of course, eventually the earth changed, the tyranny of the microbial mats was overcome by new evolutionary innovations in animals, and other adaptive paths took life into a third dimension. Consequently, the animals living on the seafloor started acting more like the ones we see today: not just living on or just underneath that seafloor, but also going down into it. This change was huge in an ecological sense, sometimes dubbed by paleontologists as the agronomic revolution, which accompanied the Cambrian explosion. This is not to say that revolutions must involve explosions, though. On the contrary, this was a quiet and slow sort of revolt, in which as earth environments changed, natural selection favored the burrowers, and the burrowers changed their environment. ¡Viva la revolución!

Here’s a little musical lesson about the increased biodiversity of the Cambrian Period. Professors, assign it to your students. Students, tell you professors about it, so they can look like they’re almost hip when they assign it. And for American viewers: the song has some sort of subversive subliminal message toward the end, praising some country other than the U.S. You’ve been warned.

In this respect, what was most meaningful about our visit to Fortune Head was seeing evidence of this ecological shift at the very same outcrop holding the stratotype for the Ediacaran-Cambrian boundary. Small, thin burrows preserved in the rocks from the earliest part of the Cambrian Period, spoke of this difference in the way life related to the seafloor. Vertically oriented they were, having gone into the sediment at a depth only the width of my fingernail. Nonetheless, it was a start, and an important one, heralding the evolution of ecosystems that more closely approach those of today.

See that little U-shaped burrow just below that thin sandstone? It only goes about a centimeter down, but that’s deeper than nearly any other burrow you would see in rocks from the Ediacaran Period. This sort of simple U-shaped burrow is given the ichnogenus name Arenicolites by ichnologists. Canadian-themed scale is in centimeters. (Photograph by Anthony Martin, taken at Fortune Head, Newfoundland.)

Same goes for this burrow, which is a spiral – cut on its side – and named Gyrolithes. Scale bar = 1 cm (0.4 in). (Photograph by Anthony Martin, taken at Fortune Head, Newfoundland.)

Life has moved further downward since, from worms to arthropods in marine environments, then later from millipedes to dinosaurs to gopher tortoises in continental environments, looking to places well below the surface that they could call home. So it was a awe-inspiring privilege to see a sample from the geologic record of when this first started, one centimeter at a time.

What was next stage for burrowing animals in the world’s oceans during the next 100 million years or so? To answer that question, we’ll jump ahead to the Ordovician Period, shuttling between rocks and trace fossils of that age in both Newfoundland and Georgia (USA, y’all). But while doing this, we’ll also look for glimpses of how these Ordovician trace fossils get just a little bit closer to the traces we being made in the modern sediments of the Georgia coast, and thus more like the actualism we all know and love.

Further Reading

Bottjer,D.J., Hagadorn, J.W., and Dornbos, S.Q. 2000. The Cambrian substrate revolution. GSA Today, 10(9): 1-7.

Canfield, D.E., and Farquhar, J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences, 106: 8123-8127.

Gingras, M., et al. 2011. Possible evolution of mobile animals in association with microbial mats. Nature Geoscience, 4: 372-375.

Seilacher, A. 1999.Biomat-related lifestyles in the Precambrian. Palaios, 14: 86-93.

Vickers-Rich, P., and Komarower, P. (editors). 2007 The Rise and Fall of the Ediacaran Biota. Geological Society of London, Special Publication 286: 448 p.

Mistaken Point and the Limits of Actualism

Sometimes we paleontologists, especially those who also study modern organisms and their behaviors, get a little too sure of ourselves, thinking we have a clear vision of life during the pre-human past. So it’s good to have that confidence shaken a little, made uneasy by a glimpse at a much deeper past, one that preceded the bulk of fossils that shape our accepted norms and basic expectations in paleontology.

Welcome to the Ediacaran Period, the span of earth history from 635-542 million years ago, and a time when actualism – the precept that the present is the key to the past – becomes a naïve, idealistic dream, a glib summary of a world that has only existed for a mere 12% of earth history.

What are these? They’re fossils, but otherwise I’m not sure what else to tell you: guess I’ve been spending too much time in the present. But for for those people who have studied them and know better than me, they’re called Charniodiscus, and they’re frond-like fossils with holdfasts (those circular parts connected to their stems) that kept them attached to the seafloor about 565 million years ago. All you have to do to see these fossils is go to Newfoundland, Mistaken Point Ecological Reserve in Newfoundland, Canada, get permission from the Reserve to visit them, have a guide accompany you, and walk 40-45 minutes to the site from a car park. Incidentally, there will be absolutely no cafes or toilets on the way there. You know, just like how it was in the Precambrian. (Photograph by Anthony Martin; scale in centimeters.)

These discomforting realizations started a little less than two weeks ago, inspired by a field trip to the Ediacaran-Cambrian rocks of eastern Newfoundland, Canada. Why was I in cool, temperate Newfoundland, instead of sweating it out on the summertime Georgia coast? The occasion was a pre-meeting trip associated with the International Congress on Ichnology, simply known among ichnologists as Ichnia. This was the third such meeting, a once-every-four-years event (coinciding with years of the summer Olympics). The previous two were in Krakow, Poland (2008) and Trelew, Argentina (2004), and thus far these meetings also include fabulous field trips.

For Ichnia 2012, upon seeing an announcement of a field trip to Mistaken Point and other localities associated with the Precambrian-Cambrian boundary, I eagerly signed up for it. You see, Mistaken Point is world famous for its extraordinary preservation of more than 1,000 body fossils of those weird and wonderful fossils known as the Ediacaran fauna, Ediacaran biota, Vendian fauna, or Vendobionts (take your pick). This was the main reason why my fellow ichnologists on the field trip – 16 of us from 9 countries – were along for the ride, despite the trip’s clear emphasis on body fossils.

A rare photo of ichnologists getting really excited about seeing body fossils, which is totally understandable when we’re talking about the Ediacaran fossils at Mistaken Point, Newfoundland. Eventually, though, they later became unruly and started demanding, “Show me your trace fossils!” Fortunately for the sake of international ichnological relations, the field-trip leaders happily obliged that same day. (Photograph by Ruth Schowalter.)

These rare fossils, which are strange enough to even cause paleontologists to question whether or not they are animals (hence the cautious use of the more inclusive term “biota” instead of “fauna”), are abundantly exposed on broad bedding planes in Mistaken Point Ecological Reserve on the southeastern coast of Newfoundland. Discovered in 1967, these fossils have since proved to be one of the best examples of easily visible body fossils from more than 542 million years ago, and the Newfoundland fossils comprise the only such assemblage that originally lived in deep-marine environments. They evidently died in place when suffocated by a layer of volcanic ash that settled onto the seafloor, hence the fossils reflect a probable sample of their original ecosystem. This ash layer neatly preserved the fossils, and its minerals provided a means to calculate absolute age dates for the assemblage, which is from 565 +/- 3 mya (million years ago).

Bedding-plane exposure at Mistaken Point with many frond-like fossils, broadly referred to as rangeomorphs. (Photograph by Anthony Martin, Canadian-themed scale is in centimeters.)

A close-up of one of the more exquisitely preserved rangeomorphs, which I think is Fractofusus misrai. But you really shouldn’t trust this ichnologist with that identification, so it’d be wise to double-check that with a real expert. (Photograph by Anthony Martin.)

Just a few years ago, though, Mistaken Point became paleontologically famous again, and this time for its trace fossils. Researchers from Memorial University in Newfoundland and Oxford University looked at bedding planes near those holding the the body fossils, and were surprised to find a few trails there. At that time, it was the oldest evidence of animal movement from the fossil record, and although these finds have been disputed and others have tried to stake this claim for trace fossils elsewhere, it is still holding up fairly well.

A surface trail, probably made by a < 1 cm wide animal moving along the seafloor about 565 mya. The animal moved from left to right, which is indicated by the crescentic ridges inside the trail, which open in the direction of movement. (Photograph by Anthony Martin, taken at Mistaken Point, Newfoundland.)

Another surface trail, but this one without the internal structure of the other one, and with levees on either side of the central furrow. (Photograph by Anthony Martin, taken at Mistaken Point, Newfoundland.)What’s this? Don’t have a clue. It looks like a series of overlapping trails, some looping, but would have taken me several hours to unravel. Anyway, it generated some good discussion at the outcrop, and they’re probably trace fossils, which made us ichnologists both happy and perplexed. (Photograph by Anthony Martin, taken at Mistaken Point, Newfoundland; scale in centimeters.)

What made these trace fossils? It’s hard to say, and that’s a humbling statement for me to make. In public talks I’ve given about my upcoming book, and in a presentation I gave the following week at Ichnia on the Memorial University campus, I’ve assured how the actualism of the Georgia barrier islands and its traces can reliably serve as models for interpreting many trace fossils formed in different environments, and trace fossils of various geologic ages from around the world. But in this instance, I didn’t have a inkling of what made the Mistaken Point trace fossils. These trace fossils were also made in deep-marine environments, which are lacking from the Georgia coast, and I haven’t learned much about deep-marine trace fossils from elsewhere.

In short, my ignorance was showing, and these trace fossils were completely out of my realm of experience. The only feeble hypothesis I could conjure on the basis of what I’ve seen in modern sediments of the Georgia barrier islands are small marine gastropod trails. Sorry, that’s all I got.

Oooo, look, it’s snail! Making a trail! Isn’t that neat? And if you squint really hard and have a couple of beers, you might agree that it almost resembles one of the fossil trails from Mistaken Point. Don’t see it yet? Here, have another beer. (Photograph by Anthony Martin, taken at Sapelo Island, Georgia; scale in millimeters. )

But if ignorance loves company, I can feel good in knowing that others have grasped at the same straw of actualism and found it far too short. I could tell a few of my ichnological colleagues were likewise a little challenged by what they saw at Mistaken Point, and I knew that for some of them – like me – they normally deal with trace fossils in much younger rocks. But hey, that’s what geology field trips are supposed to do: challenge us with what’s really there in the rock record, right there in front of us, rather than what we wish were there.

Fortunately, a little more information provided during the meeting after the field trip helped my understanding of the trace fossils we saw at Mistaken Point, and actually connected to modern tracemakers. Alexander Liu, the primary author of the paper that first reported the trace fossils, gave a talk that reviewed the evidence for Precambrian trace fossils, including those from Mistaken Point. In experiments he and his coauthors did with living anemones in a laboratory setting, they were able to reproduce trails similar to the Mistaken Point trace fossil with the internal structure. Thus these researchers were able to use actualism to assist in their interpretation, which also meant that neoichnology was not so useless after all when applied to the Ediacaran. That made me feel a little better.

Let’s take a look at that first surface trail again, but this time with the help of my trustworthy colleague Paleontologist Barbie, who was along for the field trip. The crecentic ridges in the interior of the trail may represent marks where the basal disc of a anemone-like animal pushed against the surface as it moved. Even more interesting, the arrow points to an oval impression, which may be a resting trace that shows the approximate basal diameter of the tracemaker. What was the tracemaker? It’s currently identified as a small anemone, which is based on modern traces. Neoichnology rules! (Photograph by Anthony Martin.)

Ediacaran trace fossils still engender debate, though, and especially with people who don’t necessarily accept that animals made trails during the Ediacaran. For instance, about four years ago, some scuba-diving researchers observed a giant protozoan making a trail on a sediment surface in the Bahamas. Accordingly, they proposed that one-celled organisms – not animals – could have made similar trails during the Ediacaran Period. Interestingly, this shows how actualism can produce conflicting results when applied to Ediacaran fossils. After all, it’s still a big world out there, and we humans haven’t really observed everything in it yet.

So I’ll make one last point about Ediacaran fossils here, then will move on to more recent times. If you think that at the very least we paleontologists should be able to tell the difference between trace fossils and body fossils in Ediacaran rocks, you’re also in for some confusion. In the only research article I have ever attempted on Ediacaran fossils, which were much closer to Georgia – coming from the Carolina Slate Belt of North Carolina – my coauthors and I struggled with exactly that question with some fossils found in that area. In the end, we said they were body fossils, not trace fossils. And as everyone knows, I love trace fossils, and I really wanted these to be trace fossils. But they were not. That’s science for you: denying your deepest desires in the face of reality.

So surely the Cambrian would be easier to interpret, right? I meanl, after 542 mya, animals started burrowing merrily, to and fro, hither and tither, with uninhibited and orgiastic abandon, and, well, you get the idea. But, not really. Another part of the field trip involved looking at what happened with the departure of the relatively unbioturbated alien world of the Ediacaran, pre-542 mya, to the more familiar sediment mixing of the Cambrian and Ordovician Periods, post-542 mya. Yet even these rocks and their trace fossils were still not quite like what we see today.

This will be the subject of my next post, which will again explore the theme of how we should approach strict actualism like any scientifically based idea: with a mixture of astonished wonder, but also with a hard-edged look at what is really there.

As we bid adieu to Mistaken Point and began our walk back to the car park, we could swear we saw lifeforms emerging from the mist-covered rocks, resurrected from the deep time and deep water of the Avalonian Precambrian. Then we realized those were just some of our group behind us. Oh well. Maybe next time. (Photograph by Anthony Martin.)

(Acknowledgements: Much appreciation is extended to the field trip leaders – Liam Herringshaw, Jack Matthews, and Duncan McIlroy – for their organization and execution of a fantastic three-day field trip; to Valerie and Richard of the Mistaken Point Ecological Reserve for guiding us to the site; to my ichnological colleagues for their cheery and knowledge-broadening company; and my wife Ruth for being with me and providing an artist’s perspective about her experiences with us crazy ichnologists, shared here and here.)

Further Reading

Fedonkin, M., Vickers-Rich, P. Grey, K., and Narbonne, G. 2007.The Rise of Animals: Evolution and Diversification of the Animalia. Johns Hopkins Press, Washington: 320 p.

Liu, A.G., McIlroy, D., and Brasier, M.D. 2010. First evidence for locomotion in the Ediacaran biota from the 565Ma Mistaken Point Formation, Newfoundland. Geology, 38: 123-126.

Matz, M.V., Frank. T.M., Marshall, N.J., Widder, E.A., and Johnsen, S. 2008. Giant deep-sea protest produces bilaterian-like traces. Current Biology, 18: 1-6

Tacker, R.C., Martin, A.J., Weaver, P.G., and Lawver, D.R. 2010. Trace vs. body fossil: Oldhamia recta revisited. Precambrian Research, 178: 43-50.

Vickers-Rich, P., and Komarower, P. (editors). 2007 The Rise and Fall of the Ediacaran Biota. Geological Society of London, Special Publication 286: 448 p.